Cargando…
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
The current predictive modeling techniques applied to Density Functional Theory (DFT) computations have helped accelerate the process of materials discovery by providing significantly faster methods to scan materials candidates, thereby reducing the search space for future DFT computations and exper...
Autores principales: | Jha, Dipendra, Choudhary, Kamal, Tavazza, Francesca, Liao, Wei-keng, Choudhary, Alok, Campbell, Carelyn, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874674/ https://www.ncbi.nlm.nih.gov/pubmed/31757948 http://dx.doi.org/10.1038/s41467-019-13297-w |
Ejemplares similares
-
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2020) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Gupta, Vishu, et al.
Publicado: (2021) -
MPpredictor: An
Artificial Intelligence-Driven Web
Tool for Composition-Based Material Property Prediction
por: Gupta, Vishu, et al.
Publicado: (2023) -
Moving closer to experimental level materials property prediction using AI
por: Jha, Dipendra, et al.
Publicado: (2022) -
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
por: Jha, Dipendra, et al.
Publicado: (2018)