Cargando…
DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field
BACKGROUND: Plant population density is an important factor for agricultural production systems due to its substantial influence on crop yield and quality. Traditionally, plant population density is estimated by using either field assessment or a germination-test-based approach. These approaches can...
Autores principales: | Jiang, Yu, Li, Changying, Paterson, Andrew H., Robertson, Jon S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874826/ https://www.ncbi.nlm.nih.gov/pubmed/31768186 http://dx.doi.org/10.1186/s13007-019-0528-3 |
Ejemplares similares
-
Seedling maize counting method in complex backgrounds based on YOLOV5 and Kalman filter tracking algorithm
por: Li, Yang, et al.
Publicado: (2022) -
Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields
por: Ma, Xu, et al.
Publicado: (2019) -
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field
por: Jiang, Yu, et al.
Publicado: (2020) -
Deep learning-based detection of seedling development
por: Samiei, Salma, et al.
Publicado: (2020) -
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection
por: Xu, Rui, et al.
Publicado: (2018)