Cargando…
Diagnostic Value of Machine Learning-Based Quantitative Texture Analysis in Differentiating Benign and Malignant Thyroid Nodules
AIM: The aim of this study is to evaluate the diagnostic value of machine learning- (ML-) based quantitative texture analysis in the differentiation of benign and malignant thyroid nodules. MATERIALS AND METHODS: A sum of 306 quantitative textural features of 235 thyroid nodules (102 malignant, 43.4...
Autores principales: | Colakoglu, Bulent, Alis, Deniz, Yergin, Mert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874925/ https://www.ncbi.nlm.nih.gov/pubmed/31781216 http://dx.doi.org/10.1155/2019/6328329 |
Ejemplares similares
-
Elastography in Distinguishing Benign from Malignant Thyroid Nodules
por: Colakoglu, Bulent, et al.
Publicado: (2016) -
Evaluation of lumbar multifidus muscle in patients with lumbar disc herniation: are complex quantitative MRI measurements needed?
por: Colakoglu, Bulent, et al.
Publicado: (2019) -
Application of Texture Analysis Method for Classification of Benign and Malignant Thyroid Nodules in Ultrasound Images
por: Abbasian Ardakani, Ali, et al.
Publicado: (2015) -
Benign and malignant thyroid nodules with autoimmune thyroiditis
por: Kassi, Georgia N., et al.
Publicado: (2022) -
Quantitative Analysis of Galectin-3 Expression in Benign and Malignant Thyroid Nodules
por: Šamija, Ivan, et al.
Publicado: (2020)