Cargando…
Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification
In recent years, functional brain network topological features have been widely used as classification features. Previous studies have found that network node scale differences caused by different network parcellation definitions significantly affect the structure of the constructed network and its...
Autores principales: | Guo, Hao, Li, Yao, Mensah, Godfred Kim, Xu, Yong, Chen, Junjie, Xiang, Jie, Chen, Dongwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875180/ https://www.ncbi.nlm.nih.gov/pubmed/31781290 http://dx.doi.org/10.1155/2019/9108108 |
Ejemplares similares
-
sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic
por: Das, Pijush, et al.
Publicado: (2020) -
Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State (Hunger/Satiety)
por: Al-Zubaidi, Arkan, et al.
Publicado: (2019) -
Machine learning classification of resting state functional connectivity predicts smoking status
por: Pariyadath, Vani, et al.
Publicado: (2014) -
Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020) -
Corrigendum: Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020)