Cargando…
Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden
During the past 50 years, Fennoscandian populations of spring‐spawning Baltic cisco (Coregonus albula), sympatric to common autumn‐spawners, have declined or disappeared; for example, three out of four known spring‐spawning populations in Sweden are regarded as extinct. Over the same period, the cli...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875587/ https://www.ncbi.nlm.nih.gov/pubmed/31788210 http://dx.doi.org/10.1002/ece3.5745 |
_version_ | 1783473065811771392 |
---|---|
author | Delling, Bo Palm, Stefan |
author_facet | Delling, Bo Palm, Stefan |
author_sort | Delling, Bo |
collection | PubMed |
description | During the past 50 years, Fennoscandian populations of spring‐spawning Baltic cisco (Coregonus albula), sympatric to common autumn‐spawners, have declined or disappeared; for example, three out of four known spring‐spawning populations in Sweden are regarded as extinct. Over the same period, the climate has changed and populations have been subject to other anthropogenic stressors. We compared historic (1960s) and recent (1990–2000s) morphological data from the still‐existent sympatric cisco populations in Lake Fegen, Sweden. Phenotypic changes were found for spring‐spawners making them more similar to the sympatric autumn‐spawners that had remained virtually unchanged. Based on results for other salmoniform fishes, a phenotypically plastic response to increased temperature during early development appears unlikely. The recent material was also analyzed with microsatellite markers; long‐term effective population size in spring‐spawners was estimated to be about 20 times lower than autumn‐spawners, with signs of long‐term gene flow in both directions and a recent genetic bottleneck in spring‐spawners. We suggest the change toward a less distinct phenotype in spring‐spawners to reflect a recent increase in gene flow from autumn‐spawners. Time since divergence was estimated to only c. 1,900 years (95% CI: 400–5,900), but still the Fegen populations represent the most morphologically and genetically distinct sympatric populations studied. Consequently, we hypothesize that less distinct population pairs can be even younger and that spring‐spawning may have repeatedly evolved and disappeared in several lakes since the end of the last glaciation, concurrent with changed environmental conditions. |
format | Online Article Text |
id | pubmed-6875587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68755872019-11-29 Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden Delling, Bo Palm, Stefan Ecol Evol Original Research During the past 50 years, Fennoscandian populations of spring‐spawning Baltic cisco (Coregonus albula), sympatric to common autumn‐spawners, have declined or disappeared; for example, three out of four known spring‐spawning populations in Sweden are regarded as extinct. Over the same period, the climate has changed and populations have been subject to other anthropogenic stressors. We compared historic (1960s) and recent (1990–2000s) morphological data from the still‐existent sympatric cisco populations in Lake Fegen, Sweden. Phenotypic changes were found for spring‐spawners making them more similar to the sympatric autumn‐spawners that had remained virtually unchanged. Based on results for other salmoniform fishes, a phenotypically plastic response to increased temperature during early development appears unlikely. The recent material was also analyzed with microsatellite markers; long‐term effective population size in spring‐spawners was estimated to be about 20 times lower than autumn‐spawners, with signs of long‐term gene flow in both directions and a recent genetic bottleneck in spring‐spawners. We suggest the change toward a less distinct phenotype in spring‐spawners to reflect a recent increase in gene flow from autumn‐spawners. Time since divergence was estimated to only c. 1,900 years (95% CI: 400–5,900), but still the Fegen populations represent the most morphologically and genetically distinct sympatric populations studied. Consequently, we hypothesize that less distinct population pairs can be even younger and that spring‐spawning may have repeatedly evolved and disappeared in several lakes since the end of the last glaciation, concurrent with changed environmental conditions. John Wiley and Sons Inc. 2019-10-29 /pmc/articles/PMC6875587/ /pubmed/31788210 http://dx.doi.org/10.1002/ece3.5745 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Delling, Bo Palm, Stefan Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden |
title | Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden |
title_full | Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden |
title_fullStr | Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden |
title_full_unstemmed | Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden |
title_short | Evolution and disappearance of sympatric Coregonus albula in a changing environment—A case study of the only remaining population pair in Sweden |
title_sort | evolution and disappearance of sympatric coregonus albula in a changing environment—a case study of the only remaining population pair in sweden |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875587/ https://www.ncbi.nlm.nih.gov/pubmed/31788210 http://dx.doi.org/10.1002/ece3.5745 |
work_keys_str_mv | AT dellingbo evolutionanddisappearanceofsympatriccoregonusalbulainachangingenvironmentacasestudyoftheonlyremainingpopulationpairinsweden AT palmstefan evolutionanddisappearanceofsympatriccoregonusalbulainachangingenvironmentacasestudyoftheonlyremainingpopulationpairinsweden |