Cargando…
Identifying Cancer genes by combining two-rounds RWR based on multiple biological data
BACKGROUND: It’s a very urgent task to identify cancer genes that enables us to understand the mechanisms of biochemical processes at a biomolecular level and facilitates the development of bioinformatics. Although a large number of methods have been proposed to identify cancer genes at recent times...
Autores principales: | Zhang, Wenxiang, Lei (IEEE member), Xiujuan, Bian, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876101/ https://www.ncbi.nlm.nih.gov/pubmed/31760937 http://dx.doi.org/10.1186/s12859-019-3123-8 |
Ejemplares similares
-
PRID: Prediction Model Using RWR for Interactions between Drugs
por: Seo, Jiwon, et al.
Publicado: (2023) -
RecRWR: A Recursive Random Walk Method for Improved Identification of Diseases
por: Perdiz Arrais, Joel, et al.
Publicado: (2015) -
Prediction of lncRNA-disease associations by integrating diverse heterogeneous information sources with RWR algorithm and positive pointwise mutual information
por: Fan, Xiao-Nan, et al.
Publicado: (2019) -
RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer
por: Liao, Fei, et al.
Publicado: (2020) -
Gate-keeper of ion transport—a highly conserved helix-3 tryptophan in a channelrhodopsin chimera, C1C2/ChRWR
por: Nagasaka, Yujiro, et al.
Publicado: (2020)