Cargando…
MIA-Sig: multiplex chromatin interaction analysis by signal processing and statistical algorithms
The single-molecule multiplex chromatin interaction data are generated by emerging 3D genome mapping technologies such as GAM, SPRITE, and ChIA-Drop. These datasets provide insights into high-dimensional chromatin organization, yet introduce new computational challenges. Thus, we developed MIA-Sig,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876102/ https://www.ncbi.nlm.nih.gov/pubmed/31767038 http://dx.doi.org/10.1186/s13059-019-1868-z |
Sumario: | The single-molecule multiplex chromatin interaction data are generated by emerging 3D genome mapping technologies such as GAM, SPRITE, and ChIA-Drop. These datasets provide insights into high-dimensional chromatin organization, yet introduce new computational challenges. Thus, we developed MIA-Sig, an algorithmic solution based on signal processing and information theory. We demonstrate its ability to de-noise the multiplex data, assess the statistical significance of chromatin complexes, and identify topological domains and frequent inter-domain contacts. On chromatin immunoprecipitation (ChIP)-enriched data, MIA-Sig can clearly distinguish the protein-associated interactions from the non-specific topological domains. Together, MIA-Sig represents a novel algorithmic framework for multiplex chromatin interaction analysis. |
---|