Cargando…

Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering

BACKGROUND: Rhodobacter sphaeroides is a metabolically versatile bacterium that serves as a model for analysis of photosynthesis, hydrogen production and terpene biosynthesis. The elimination of by-products formation, such as poly-β-hydroxybutyrate (PHB), has been an important metabolic engineering...

Descripción completa

Detalles Bibliográficos
Autores principales: Mougiakos, Ioannis, Orsi, Enrico, Ghiffary, Mohammad Rifqi, Post, Wilbert, de Maria, Alberto, Adiego-Perez, Belén, Kengen, Servé W. M., Weusthuis, Ruud A., van der Oost, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876111/
https://www.ncbi.nlm.nih.gov/pubmed/31767004
http://dx.doi.org/10.1186/s12934-019-1255-1
Descripción
Sumario:BACKGROUND: Rhodobacter sphaeroides is a metabolically versatile bacterium that serves as a model for analysis of photosynthesis, hydrogen production and terpene biosynthesis. The elimination of by-products formation, such as poly-β-hydroxybutyrate (PHB), has been an important metabolic engineering target for R. sphaeroides. However, the lack of efficient markerless genome editing tools for R. sphaeroides is a bottleneck for fundamental studies and biotechnological exploitation. The Cas9 RNA-guided DNA-endonuclease from the type II CRISPR-Cas system of Streptococcus pyogenes (SpCas9) has been extensively employed for the development of genome engineering tools for prokaryotes and eukaryotes, but not for R. sphaeroides. RESULTS: Here we describe the development of a highly efficient SpCas9-based genomic DNA targeting system for R. sphaeroides, which we combine with plasmid-borne homologous recombination (HR) templates developing a Cas9-based markerless and time-effective genome editing tool. We further employ the tool for knocking-out the uracil phosphoribosyltransferase (upp) gene from the genome of R. sphaeroides, as well as knocking it back in while altering its start codon. These proof-of-principle processes resulted in editing efficiencies of up to 100% for the knock-out yet less than 15% for the knock-in. We subsequently employed the developed genome editing tool for the consecutive deletion of the two predicted acetoacetyl-CoA reductase genes phaB and phbB in the genome of R. sphaeroides. The culturing of the constructed knock-out strains under PHB producing conditions showed that PHB biosynthesis is supported only by PhaB, while the growth of the R. sphaeroides ΔphbB strains under the same conditions is only slightly affected. CONCLUSIONS: In this study, we combine the SpCas9 targeting activity with the native homologous recombination (HR) mechanism of R. sphaeroides for the development of a genome editing tool. We further employ the developed tool for the elucidation of the PHB production pathway of R. sphaeroides. We anticipate that the presented work will accelerate molecular research with R. sphaeroides.