Cargando…
miR-331-3p suppresses cell invasion and migration in colorectal carcinoma by directly targeting NRP2
Colorectal carcinoma (CRC) is a common tumor of the digestive system with poor prognosis. Studies have shown that aberrant microRNA (miRNA) expression can affect CRC progression by regulating target genes. In the present study, we investigated the functional roles and potential mechanisms of miR-331...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876315/ https://www.ncbi.nlm.nih.gov/pubmed/31807170 http://dx.doi.org/10.3892/ol.2019.11029 |
Sumario: | Colorectal carcinoma (CRC) is a common tumor of the digestive system with poor prognosis. Studies have shown that aberrant microRNA (miRNA) expression can affect CRC progression by regulating target genes. In the present study, we investigated the functional roles and potential mechanisms of miR-331-3p in CRC. The expression of miR-331-3p and neuropilin-2 (NRP2) in CRC was detected by RT-qPCR. Then, Transwell assays were conducted to investigate the influence of miR-331-3p on CRC cell invasion and migration abilities. Luciferase reporter assays were performed to determine the target gene of miR-331-3p. It was found that miR-331-3p expression was notably declined in CRC and inversely correlated with the NRP2 expression. miR-331-3p upregulation significantly inhibited CRC cell invasion and migration. Additionally, western blot analysis demonstrated that miR-331-3p restoration evidently suppressed CRC cell EMT. Moreover, NRP2 was conformed to be a novel target of miR-331-3p and knockdown of NRP2 partially inversed the effects of the miR-331-3p inhibitor on cell invasion and migration. These results suggested that miR-331-3p exerted tumor suppressive roles in CRC by targeting NRP2 and miR-331-3p/NRP2 may serve as a potential therapy for CRC. |
---|