Cargando…

MicroRNA-133a inhibits the proliferation of non-small cell lung cancer by targeting YES1

Previous studies have reported that microRNA-133a (miR-133a) is involved in the pathogenesis of human cancers. This study investigated the effect of miR-133a on cell proliferation in non-small cell lung cancer (NSCLC). The expression of miR-133a and YES proto-oncogene 1 (YES1) was detected using rev...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yuyao, Chen, Fangwei, Liang, Yanchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876323/
https://www.ncbi.nlm.nih.gov/pubmed/31807185
http://dx.doi.org/10.3892/ol.2019.11030
Descripción
Sumario:Previous studies have reported that microRNA-133a (miR-133a) is involved in the pathogenesis of human cancers. This study investigated the effect of miR-133a on cell proliferation in non-small cell lung cancer (NSCLC). The expression of miR-133a and YES proto-oncogene 1 (YES1) was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. The CCK-8 assay was used to measure cell proliferation. The relationship between miR-133a and YES1 was confirmed by dual luciferase assay. Downregulation of miR-133a was identified in NSCLC and correlated with poor prognosis in NSCLC patients. Moreover, the overexpression of miR-133a inhibited proliferation of NSCLC cells. YES1 was also confirmed as a direct target of miR-133a. Downregulation of YES1 was found to inhibit cell proliferation in NSCLC. By contrast, the upregulation of YES1 abolished the inhibitory effect of miR-133a on cell proliferation in NSCLC. miR-133a inhibited cell proliferation in NSCLC by targeting YES1, indicating that miR-133a can be used as an indicator of prognosis in NSCLC patients.