Cargando…
MicroRNA-133a inhibits the proliferation of non-small cell lung cancer by targeting YES1
Previous studies have reported that microRNA-133a (miR-133a) is involved in the pathogenesis of human cancers. This study investigated the effect of miR-133a on cell proliferation in non-small cell lung cancer (NSCLC). The expression of miR-133a and YES proto-oncogene 1 (YES1) was detected using rev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876323/ https://www.ncbi.nlm.nih.gov/pubmed/31807185 http://dx.doi.org/10.3892/ol.2019.11030 |
Sumario: | Previous studies have reported that microRNA-133a (miR-133a) is involved in the pathogenesis of human cancers. This study investigated the effect of miR-133a on cell proliferation in non-small cell lung cancer (NSCLC). The expression of miR-133a and YES proto-oncogene 1 (YES1) was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. The CCK-8 assay was used to measure cell proliferation. The relationship between miR-133a and YES1 was confirmed by dual luciferase assay. Downregulation of miR-133a was identified in NSCLC and correlated with poor prognosis in NSCLC patients. Moreover, the overexpression of miR-133a inhibited proliferation of NSCLC cells. YES1 was also confirmed as a direct target of miR-133a. Downregulation of YES1 was found to inhibit cell proliferation in NSCLC. By contrast, the upregulation of YES1 abolished the inhibitory effect of miR-133a on cell proliferation in NSCLC. miR-133a inhibited cell proliferation in NSCLC by targeting YES1, indicating that miR-133a can be used as an indicator of prognosis in NSCLC patients. |
---|