Cargando…

Maximum parsimony interpretation of chromatin capture experiments

We present a new approach to characterizing the global geometric state of chromatin from HiC data. Chromatin conformation capture techniques (3C, and its variants: 4C, 5C, HiC, etc.) probe the spatial structure of the genome by identifying physical contacts between genomic loci within the nuclear sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Homouz, Dirar, Kudlicki, Andrzej S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876987/
https://www.ncbi.nlm.nih.gov/pubmed/31765406
http://dx.doi.org/10.1371/journal.pone.0225578
Descripción
Sumario:We present a new approach to characterizing the global geometric state of chromatin from HiC data. Chromatin conformation capture techniques (3C, and its variants: 4C, 5C, HiC, etc.) probe the spatial structure of the genome by identifying physical contacts between genomic loci within the nuclear space. In whole-genome conformation capture (HiC) experiments, the signal can be interpreted as spatial proximity between genomic loci and physical distances can be estimated from the data. However, observed spatial proximity signal does not directly translate into persistent contacts within the nuclear space. Attempts to infer a single conformation of the genome within the nuclear space lead to internal geometric inconsistencies, notoriously violating the triangle inequality. These inconsistencies have been attributed to the stochastic nature of chromatin conformation or to experimental artifacts. Here we demonstrate that it can be explained by a mixture of cells, each in one of only several conformational states, contained in the sample. We have developed and implemented a graph-theoretic approach that identifies the properties of such postulated subpopulations. We show that the geometrical conflicts in a standard yeast HiC dataset, can be explained by only a small number of homogeneous populations of cells (4 populations are sufficient to reconcile 95,000 most prominent impossible triangles, 8 populations can explain 375,000 top geometric conflicts). Finally, we analyze the functional annotations of genes differentially interacting between the populations, suggesting that each inferred subpopulation may be involved in a functionally different transcriptional program.