Cargando…

Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals

Wave trapping and manipulation are at the heart of modern integrated photonics and acoustics. Grand challenges emerge on increasing the integration density and reducing the wave leakage/noises due to fabrication imperfections, especially for waveguides and cavities at subwavelength scales. The risin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiujuan, Xie, Bi-Ye, Wang, Hong-Fei, Xu, Xiangyuan, Tian, Yuan, Jiang, Jian-Hua, Lu, Ming-Hui, Chen, Yan-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877633/
https://www.ncbi.nlm.nih.gov/pubmed/31767849
http://dx.doi.org/10.1038/s41467-019-13333-9
Descripción
Sumario:Wave trapping and manipulation are at the heart of modern integrated photonics and acoustics. Grand challenges emerge on increasing the integration density and reducing the wave leakage/noises due to fabrication imperfections, especially for waveguides and cavities at subwavelength scales. The rising of robust wave dynamics based on topological mechanisms offers possible solutions. Ideally, in a three-dimensional (3D) topological integrated chip, there are coexisting robust two-dimensional (2D) interfaces, one-dimensional (1D) waveguides and zero-dimensional (0D) cavities. Here, we report the experimental discovery of such a dimensional hierarchy of the topologically-protected 2D surface states, 1D hinge states and 0D corner states in a single 3D system. Such an unprecedented phenomenon is triggered by the higher-order topology in simple-cubic sonic crystals and protected by the space group [Formula: see text] . Our study opens up a new regime for multidimensional wave trapping and manipulation at subwavelength scales, which may inspire future technology for integrated acoustics and photonics.