Cargando…
Ionic Tuning of Droplet Motion on Water Surface
Herein, the oscillation of an oil droplet on the surface of water is studied. The droplet contains an anionic surfactant that can react with the cations present in water. The oscillation starts after a random motion, and the oscillation pattern apparently depends on the cation species in the water p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877656/ https://www.ncbi.nlm.nih.gov/pubmed/31803721 http://dx.doi.org/10.3389/fchem.2019.00788 |
_version_ | 1783473379835117568 |
---|---|
author | Mikuchi, Yudai Yamashita, Hirofumi Yamamoto, Daigo Nawa-Okita, Erika Shioi, Akihisa |
author_facet | Mikuchi, Yudai Yamashita, Hirofumi Yamamoto, Daigo Nawa-Okita, Erika Shioi, Akihisa |
author_sort | Mikuchi, Yudai |
collection | PubMed |
description | Herein, the oscillation of an oil droplet on the surface of water is studied. The droplet contains an anionic surfactant that can react with the cations present in water. The oscillation starts after a random motion, and the oscillation pattern apparently depends on the cation species in the water phase. However, a common pattern is included. The cation species only affects the amplitude and frequency and sometimes perturbs the regular pattern owing to the instability at the oil/water interface. This common pattern is explained by a simple model that incorporates the surfactant transport from the droplet to the surrounding water surface. The dependency of the amplitude and frequency on cation species is expressed quantitatively by a single parameter, the product of the amplitude and square of frequency. This parameter depends on the cationic species and can be understood in terms of the spreading coefficient. The simple model successfully explains this dependency. |
format | Online Article Text |
id | pubmed-6877656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68776562019-12-04 Ionic Tuning of Droplet Motion on Water Surface Mikuchi, Yudai Yamashita, Hirofumi Yamamoto, Daigo Nawa-Okita, Erika Shioi, Akihisa Front Chem Chemistry Herein, the oscillation of an oil droplet on the surface of water is studied. The droplet contains an anionic surfactant that can react with the cations present in water. The oscillation starts after a random motion, and the oscillation pattern apparently depends on the cation species in the water phase. However, a common pattern is included. The cation species only affects the amplitude and frequency and sometimes perturbs the regular pattern owing to the instability at the oil/water interface. This common pattern is explained by a simple model that incorporates the surfactant transport from the droplet to the surrounding water surface. The dependency of the amplitude and frequency on cation species is expressed quantitatively by a single parameter, the product of the amplitude and square of frequency. This parameter depends on the cationic species and can be understood in terms of the spreading coefficient. The simple model successfully explains this dependency. Frontiers Media S.A. 2019-11-19 /pmc/articles/PMC6877656/ /pubmed/31803721 http://dx.doi.org/10.3389/fchem.2019.00788 Text en Copyright © 2019 Mikuchi, Yamashita, Yamamoto, Nawa-Okita and Shioi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Mikuchi, Yudai Yamashita, Hirofumi Yamamoto, Daigo Nawa-Okita, Erika Shioi, Akihisa Ionic Tuning of Droplet Motion on Water Surface |
title | Ionic Tuning of Droplet Motion on Water Surface |
title_full | Ionic Tuning of Droplet Motion on Water Surface |
title_fullStr | Ionic Tuning of Droplet Motion on Water Surface |
title_full_unstemmed | Ionic Tuning of Droplet Motion on Water Surface |
title_short | Ionic Tuning of Droplet Motion on Water Surface |
title_sort | ionic tuning of droplet motion on water surface |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877656/ https://www.ncbi.nlm.nih.gov/pubmed/31803721 http://dx.doi.org/10.3389/fchem.2019.00788 |
work_keys_str_mv | AT mikuchiyudai ionictuningofdropletmotiononwatersurface AT yamashitahirofumi ionictuningofdropletmotiononwatersurface AT yamamotodaigo ionictuningofdropletmotiononwatersurface AT nawaokitaerika ionictuningofdropletmotiononwatersurface AT shioiakihisa ionictuningofdropletmotiononwatersurface |