Cargando…
Screen Printed Passives and Interconnects on Bio-Degradable Medical Hydrocolloid Dressing for Wearable Sensors
The healthcare system is undergoing a noticeable transformation from a reactive, post-disease treatment to a preventive, predictive continuous healthcare. The key enabler for such a system is a pervasive wearable platform. Several technologies have been suggested and implemented as a wearable platfo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877755/ https://www.ncbi.nlm.nih.gov/pubmed/31767873 http://dx.doi.org/10.1038/s41598-019-53033-4 |
Sumario: | The healthcare system is undergoing a noticeable transformation from a reactive, post-disease treatment to a preventive, predictive continuous healthcare. The key enabler for such a system is a pervasive wearable platform. Several technologies have been suggested and implemented as a wearable platform, but these technologies either lack reliability, manufacturing practicability or pervasiveness. We propose a screen-printed circuit board on bio-degradable hydrocolloid dressings, which are medically used and approved, as a platform for wearable biomedical sensors to overcome the aforementioned problems. We experimentally characterize and prepare the surface of the hydrocolloid and demonstrate high-quality screen-printed passive elements and interconnects on its surface using conductive silver paste. We also propose appropriate models of the thick-film screen-printed passives, validated through measurements and FEM simulations. We further elucidate on the usage of the hydrocolloid dressing by prototyping a Wireless Power Transfer (WPT) sensor and a humidity sensor using printed spiral inductors and interdigital capacitors, respectively. |
---|