Cargando…
Cyclins regulating oocyte meiotic cell cycle progression(†)
Oocyte meiotic maturation is a vital and final process in oogenesis. Unlike somatic cells, the oocyte needs to undergo two continuous meiotic divisions (meiosis I and meiosis II) to become a haploid gamete. Notably, oocyte meiotic progression includes two rounds of unique meiotic arrest and resumpti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877757/ https://www.ncbi.nlm.nih.gov/pubmed/31347666 http://dx.doi.org/10.1093/biolre/ioz143 |
Sumario: | Oocyte meiotic maturation is a vital and final process in oogenesis. Unlike somatic cells, the oocyte needs to undergo two continuous meiotic divisions (meiosis I and meiosis II) to become a haploid gamete. Notably, oocyte meiotic progression includes two rounds of unique meiotic arrest and resumption. The first arrest occurs at the G2 (germinal vesicle) stage and meiosis resumption is stimulated by a gonadotropin surge; the second arrest takes place at the metaphase II stage, the stage from which it is released when fertilization takes place. The maturation-promoting factor, which consists of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1), is responsible for regulating meiotic resumption and progression, while CDK1 is the unique CDK that acts as the catalytic subunit of maturation-promoting factor. Recent studies showed that except for cyclin B1, multiple cyclins interact with CDK1 to form complexes, which are involved in the regulation of meiotic progression at different stages. Here, we review and discuss the control of oocyte meiotic progression by cyclins A1, A2, B1, B2, B3, and O. |
---|