Cargando…
A Multibranch Object Detection Method for Traffic Scenes
The performance of convolutional neural network- (CNN-) based object detection has achieved incredible success. Howbeit, existing CNN-based algorithms suffer from a problem that small-scale objects are difficult to detect because it may have lost its response when the feature map has reached a certa...
Autores principales: | Feng, Jiangfan, Wang, Fanjie, Feng, Siqin, Peng, Yongrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878779/ https://www.ncbi.nlm.nih.gov/pubmed/31814818 http://dx.doi.org/10.1155/2019/3679203 |
Ejemplares similares
-
Small Object Detection in Traffic Scenes Based on YOLO-MXANet
por: He, Xiaowei, et al.
Publicado: (2021) -
DetectFormer: Category-Assisted Transformer for Traffic Scene Object Detection
por: Liang, Tianjiao, et al.
Publicado: (2022) -
Small Object Detection in Traffic Scenes Based on Attention Feature Fusion
por: Lian, Jing, et al.
Publicado: (2021) -
An object detection algorithm combining self-attention and YOLOv4 in traffic scene
por: Lu, Kewei, et al.
Publicado: (2023) -
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
por: Shen, Ying, et al.
Publicado: (2023)