Cargando…
Fast fitting of reflectivity data of growing thin films using neural networks
X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organi...
Autores principales: | Greco, Alessandro, Starostin, Vladimir, Karapanagiotis, Christos, Hinderhofer, Alexander, Gerlach, Alexander, Pithan, Linus, Liehr, Sascha, Schreiber, Frank, Kowarik, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878882/ https://www.ncbi.nlm.nih.gov/pubmed/31798360 http://dx.doi.org/10.1107/S1600576719013311 |
Ejemplares similares
-
Machine learning for scattering data: strategies, perspectives and applications to surface scattering
por: Hinderhofer, Alexander, et al.
Publicado: (2023) -
Polymorphism and structure formation in copper phthalocyanine thin films
por: Reisz, Berthold, et al.
Publicado: (2021) -
Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
por: Pithan, Linus, et al.
Publicado: (2023) -
Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering
por: Greco, Alessandro, et al.
Publicado: (2022) -
Growing of Artificial Lignin on Cellulose Ferulate
Thin Films
por: Elschner, Thomas, et al.
Publicado: (2022)