Cargando…
Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization
BACKGROUND: Selecting optimal stimulation parameters from numerous possibilities is a major obstacle for assessing the efficacy of non-invasive brain stimulation. OBJECTIVE: We demonstrate that Bayesian optimization can rapidly search through large parameter spaces and identify subject-level stimula...
Autores principales: | Lorenz, Romy, Simmons, Laura E., Monti, Ricardo P., Arthur, Joy L., Limal, Severin, Laakso, Ilkka, Leech, Robert, Violante, Ines R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879005/ https://www.ncbi.nlm.nih.gov/pubmed/31289013 http://dx.doi.org/10.1016/j.brs.2019.07.003 |
Ejemplares similares
-
The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI
por: Lorenz, Romy, et al.
Publicado: (2016) -
Dissociating frontoparietal brain networks with neuroadaptive Bayesian optimization
por: Lorenz, Romy, et al.
Publicado: (2018) -
Transient Amplitude Modulation of Alpha-Band Oscillations by Short-Time Intermittent Closed-Loop tACS
por: Zarubin, Georgy, et al.
Publicado: (2020) -
Combining TMS and tACS for Closed-Loop Phase-Dependent Modulation of Corticospinal Excitability: A Feasibility Study
por: Raco, Valerio, et al.
Publicado: (2016) -
Dose-Dependent Effects of Closed-Loop tACS Delivered During Slow-Wave Oscillations on Memory Consolidation
por: Jones, Aaron P., et al.
Publicado: (2018)