Cargando…
Unified Approach to the Chemoselective α-Functionalization of Amides with Heteroatom Nucleophiles
[Image: see text] Functionalization at the α-position of carbonyl compounds has classically relied on enolate chemistry. As a result, the generation of a new C–X bond, where X is more electronegative than carbon requires an oxidation event. Herein we show that, by rendering the α-position of amides...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879173/ https://www.ncbi.nlm.nih.gov/pubmed/31714077 http://dx.doi.org/10.1021/jacs.9b06956 |
Sumario: | [Image: see text] Functionalization at the α-position of carbonyl compounds has classically relied on enolate chemistry. As a result, the generation of a new C–X bond, where X is more electronegative than carbon requires an oxidation event. Herein we show that, by rendering the α-position of amides electrophilic through a mild and chemoselective umpolung transformation, a broad range of widely available oxygen, nitrogen, sulfur, and halogen nucleophiles can be used to generate α-functionalized amides. More than 60 examples are presented to establish the generality of this process, and calculations of the mechanistic aspects underline a fragmentation pathway that accounts for the broadness of this methodology. |
---|