Cargando…

The Effect of Oxygen Limitation on a Xylophagous Insect’s Heat Tolerance Is Influenced by Life-Stage Through Variation in Aerobic Scope and Respiratory Anatomy

Temperature has a profound impact on insect fitness and performance via metabolic, enzymatic or chemical reaction rate effects. However, oxygen availability can interact with these thermal responses in complex and often poorly understood ways, especially in hypoxia-adapted species. Here we test the...

Descripción completa

Detalles Bibliográficos
Autores principales: Javal, Marion, Thomas, Saskia, Lehmann, Philipp, Barton, Madeleine G., Conlong, Desmond E., Du Plessis, Anton, Terblanche, John S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879455/
https://www.ncbi.nlm.nih.gov/pubmed/31824337
http://dx.doi.org/10.3389/fphys.2019.01426
Descripción
Sumario:Temperature has a profound impact on insect fitness and performance via metabolic, enzymatic or chemical reaction rate effects. However, oxygen availability can interact with these thermal responses in complex and often poorly understood ways, especially in hypoxia-adapted species. Here we test the hypothesis that thermal limits are reduced under low oxygen availability – such as might happen when key life-stages reside within plants – but also extend this test to attempt to explain that the magnitude of the effect of hypoxia depends on variation in key respiration-related parameters such as aerobic scope and respiratory morphology. Using two life-stages of a xylophagous cerambycid beetle, Cacosceles (Zelogenes) newmannii we assessed oxygen-limitation effects on metabolic performance and thermal limits. We complement these physiological assessments with high-resolution 3D (micro-computed tomography scan) morphometry in both life-stages. Results showed that although larvae and adults have similar critical thermal maxima (CT(max)) under normoxia, hypoxia reduces metabolic rate in adults to a greater extent than it does in larvae, thus reducing aerobic scope in the former far more markedly. In separate experiments, we also show that adults defend a tracheal oxygen (critical) setpoint more consistently than do larvae, indicated by switching between discontinuous gas exchange cycles (DGC) and continuous respiratory patterns under experimentally manipulated oxygen levels. These effects can be explained by the fact that the volume of respiratory anatomy is positively correlated with body mass in adults but is apparently size-invariant in larvae. Thus, the two life-stages of C. newmannii display key differences in respiratory structure and function that can explain the magnitude of the effect of hypoxia on upper thermal limits.