Cargando…
Deepprune: Learning Efficient and Interpretable Convolutional Networks Through Weight Pruning for Predicting DNA-Protein Binding
Convolutional neural network (CNN) based methods have outperformed conventional machine learning methods in predicting the binding preference of DNA-protein binding. Although studies in the past have shown that more convolutional kernels help to achieve better performance, visualization of the model...
Autores principales: | Luo, Xiao, Chi, Weilai, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879555/ https://www.ncbi.nlm.nih.gov/pubmed/31824562 http://dx.doi.org/10.3389/fgene.2019.01145 |
Ejemplares similares
-
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022) -
Rethinking Weight Decay for Efficient Neural Network Pruning
por: Tessier, Hugo, et al.
Publicado: (2022) -
LdsConv: Learned Depthwise Separable Convolutions by Group Pruning
por: Lin, Wenxiang, et al.
Publicado: (2020) -
Enhanced Permutation Tests via Multiple Pruning
por: Leem, Sangseob, et al.
Publicado: (2020) -
Lossless Reconstruction of Convolutional Neural Network for Channel-Based Network Pruning
por: Lee, Donghyeon, et al.
Publicado: (2023)