Cargando…
Learning dynamical information from static protein and sequencing data
Many complex processes, from protein folding to neuronal network dynamics, can be described as stochastic exploration of a high-dimensional energy landscape. Although efficient algorithms for cluster detection in high-dimensional spaces have been developed over the last two decades, considerably les...
Autores principales: | Pearce, Philip, Woodhouse, Francis G., Forrow, Aden, Kelly, Ashley, Kusumaatmaja, Halim, Dunkel, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879630/ https://www.ncbi.nlm.nih.gov/pubmed/31772168 http://dx.doi.org/10.1038/s41467-019-13307-x |
Ejemplares similares
-
LineageOT is a unified framework for lineage tracing and trajectory inference
por: Forrow, Aden, et al.
Publicado: (2021) -
Active matter logic for autonomous microfluidics
por: Woodhouse, Francis G., et al.
Publicado: (2017) -
Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
por: Wioland, Hugo, et al.
Publicado: (2016) -
Learning developmental mode dynamics from single-cell trajectories
por: Romeo, Nicolas, et al.
Publicado: (2021) -
A minimal model of elastic instabilities in biological filament bundles
por: Prior, Chris, et al.
Publicado: (2022)