Cargando…
Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities
The drug development is generally arduous, costly, and success rates are low. Thus, the identification of drug-target interactions (DTIs) has become a crucial step in early stages of drug discovery. Consequently, developing computational approaches capable of identifying potential DTIs with minimum...
Autores principales: | Thafar, Maha, Raies, Arwa Bin, Albaradei, Somayah, Essack, Magbubah, Bajic, Vladimir B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879652/ https://www.ncbi.nlm.nih.gov/pubmed/31824921 http://dx.doi.org/10.3389/fchem.2019.00782 |
Ejemplares similares
-
Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
por: Thafar, Maha A., et al.
Publicado: (2022) -
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets
por: Alamro, Hind, et al.
Publicado: (2023) -
Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA
por: Albaradei, Somayah, et al.
Publicado: (2020)