Cargando…

Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph

The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change...

Descripción completa

Detalles Bibliográficos
Autores principales: Fixen, Kathryn R., Oda, Yasuhiro, Harwood, Caroline S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879726/
https://www.ncbi.nlm.nih.gov/pubmed/31772049
http://dx.doi.org/10.1128/mBio.02838-19
Descripción
Sumario:The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change in the composition of the photosystem, little is understood about how R. palustris senses and responds to low light intensity. On the basis of the results of transcription analysis of 17 R. palustris strains grown in low light, we found that R. palustris strains downregulate many genes involved in iron transport and homeostasis. The only operon upregulated in the majority of R. palustris exposed to low light intensity was pucBAd, which encodes LH4. In previous work, pucBAd expression was shown to be modulated in response to light quality by bacteriophytochromes that are part of a low-light signal transduction system. Here we found that this signal transduction system also includes a redox-sensitive protein, LhfE, and that its redox sensitivity is required for LH4 synthesis in response to low light. Our results suggest that R. palustris upregulates its LH4 system when the cellular redox state is relatively oxidized. Consistent with this, we found that LH4 synthesis was upregulated under high light intensity when R. palustris was grown semiaerobically or under nitrogen-fixing conditions. Thus, changes in the LH4 system in R. palustris are not dependent on light intensity per se but rather on cellular redox changes that occur as a consequence of changes in light intensity.