Cargando…

Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors

The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between m...

Descripción completa

Detalles Bibliográficos
Autores principales: Mackanic, David G., Yan, Xuzhou, Zhang, Qiuhong, Matsuhisa, Naoji, Yu, Zhiao, Jiang, Yuanwen, Manika, Tuheen, Lopez, Jeffrey, Yan, Hongping, Liu, Kai, Chen, Xiaodong, Cui, Yi, Bao, Zhenan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879760/
https://www.ncbi.nlm.nih.gov/pubmed/31772158
http://dx.doi.org/10.1038/s41467-019-13362-4
_version_ 1783473667541303296
author Mackanic, David G.
Yan, Xuzhou
Zhang, Qiuhong
Matsuhisa, Naoji
Yu, Zhiao
Jiang, Yuanwen
Manika, Tuheen
Lopez, Jeffrey
Yan, Hongping
Liu, Kai
Chen, Xiaodong
Cui, Yi
Bao, Zhenan
author_facet Mackanic, David G.
Yan, Xuzhou
Zhang, Qiuhong
Matsuhisa, Naoji
Yu, Zhiao
Jiang, Yuanwen
Manika, Tuheen
Lopez, Jeffrey
Yan, Hongping
Liu, Kai
Chen, Xiaodong
Cui, Yi
Bao, Zhenan
author_sort Mackanic, David G.
collection PubMed
description The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m(−3)) and high ionic conductivity (1.2 × 10(−4) S cm(−1) at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm(−2) that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.
format Online
Article
Text
id pubmed-6879760
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68797602019-11-29 Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors Mackanic, David G. Yan, Xuzhou Zhang, Qiuhong Matsuhisa, Naoji Yu, Zhiao Jiang, Yuanwen Manika, Tuheen Lopez, Jeffrey Yan, Hongping Liu, Kai Chen, Xiaodong Cui, Yi Bao, Zhenan Nat Commun Article The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m(−3)) and high ionic conductivity (1.2 × 10(−4) S cm(−1) at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm(−2) that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications. Nature Publishing Group UK 2019-11-26 /pmc/articles/PMC6879760/ /pubmed/31772158 http://dx.doi.org/10.1038/s41467-019-13362-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mackanic, David G.
Yan, Xuzhou
Zhang, Qiuhong
Matsuhisa, Naoji
Yu, Zhiao
Jiang, Yuanwen
Manika, Tuheen
Lopez, Jeffrey
Yan, Hongping
Liu, Kai
Chen, Xiaodong
Cui, Yi
Bao, Zhenan
Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
title Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
title_full Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
title_fullStr Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
title_full_unstemmed Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
title_short Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
title_sort decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879760/
https://www.ncbi.nlm.nih.gov/pubmed/31772158
http://dx.doi.org/10.1038/s41467-019-13362-4
work_keys_str_mv AT mackanicdavidg decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT yanxuzhou decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT zhangqiuhong decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT matsuhisanaoji decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT yuzhiao decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT jiangyuanwen decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT manikatuheen decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT lopezjeffrey decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT yanhongping decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT liukai decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT chenxiaodong decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT cuiyi decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors
AT baozhenan decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors