Cargando…
Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between m...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879760/ https://www.ncbi.nlm.nih.gov/pubmed/31772158 http://dx.doi.org/10.1038/s41467-019-13362-4 |
_version_ | 1783473667541303296 |
---|---|
author | Mackanic, David G. Yan, Xuzhou Zhang, Qiuhong Matsuhisa, Naoji Yu, Zhiao Jiang, Yuanwen Manika, Tuheen Lopez, Jeffrey Yan, Hongping Liu, Kai Chen, Xiaodong Cui, Yi Bao, Zhenan |
author_facet | Mackanic, David G. Yan, Xuzhou Zhang, Qiuhong Matsuhisa, Naoji Yu, Zhiao Jiang, Yuanwen Manika, Tuheen Lopez, Jeffrey Yan, Hongping Liu, Kai Chen, Xiaodong Cui, Yi Bao, Zhenan |
author_sort | Mackanic, David G. |
collection | PubMed |
description | The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m(−3)) and high ionic conductivity (1.2 × 10(−4) S cm(−1) at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm(−2) that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications. |
format | Online Article Text |
id | pubmed-6879760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68797602019-11-29 Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors Mackanic, David G. Yan, Xuzhou Zhang, Qiuhong Matsuhisa, Naoji Yu, Zhiao Jiang, Yuanwen Manika, Tuheen Lopez, Jeffrey Yan, Hongping Liu, Kai Chen, Xiaodong Cui, Yi Bao, Zhenan Nat Commun Article The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m(−3)) and high ionic conductivity (1.2 × 10(−4) S cm(−1) at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm(−2) that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications. Nature Publishing Group UK 2019-11-26 /pmc/articles/PMC6879760/ /pubmed/31772158 http://dx.doi.org/10.1038/s41467-019-13362-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Mackanic, David G. Yan, Xuzhou Zhang, Qiuhong Matsuhisa, Naoji Yu, Zhiao Jiang, Yuanwen Manika, Tuheen Lopez, Jeffrey Yan, Hongping Liu, Kai Chen, Xiaodong Cui, Yi Bao, Zhenan Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
title | Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
title_full | Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
title_fullStr | Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
title_full_unstemmed | Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
title_short | Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
title_sort | decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879760/ https://www.ncbi.nlm.nih.gov/pubmed/31772158 http://dx.doi.org/10.1038/s41467-019-13362-4 |
work_keys_str_mv | AT mackanicdavidg decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT yanxuzhou decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT zhangqiuhong decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT matsuhisanaoji decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT yuzhiao decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT jiangyuanwen decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT manikatuheen decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT lopezjeffrey decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT yanhongping decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT liukai decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT chenxiaodong decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT cuiyi decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors AT baozhenan decouplingofmechanicalpropertiesandionicconductivityinsupramolecularlithiumionconductors |