Cargando…
Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer
BACKGROUND: Accurate and standardized descriptions of organs at risk (OARs) are essential in radiation therapy for treatment planning and evaluation. Traditionally, physicians have contoured patient images manually, which, is time-consuming and subject to inter-observer variability. This study aims...
Autores principales: | Ahn, Sang Hee, Yeo, Adam Unjin, Kim, Kwang Hyeon, Kim, Chankyu, Goh, Youngmoon, Cho, Shinhaeng, Lee, Se Byeong, Lim, Young Kyung, Kim, Haksoo, Shin, Dongho, Kim, Taeyoon, Kim, Tae Hyun, Youn, Sang Hee, Oh, Eun Sang, Jeong, Jong Hwi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880380/ https://www.ncbi.nlm.nih.gov/pubmed/31775825 http://dx.doi.org/10.1186/s13014-019-1392-z |
Ejemplares similares
-
Facial expression monitoring system for predicting patient’s sudden movement during radiotherapy using deep learning
por: Kim, Kwang Hyeon, et al.
Publicado: (2020) -
Evaluation of the dosimetric effect of scattered protons in clinical practice in passive scattering proton therapy
por: Kim, Chankyu, et al.
Publicado: (2021) -
Deep learning method for prediction of patient-specific dose distribution in breast cancer
por: Ahn, Sang Hee, et al.
Publicado: (2021) -
Beam Angle Optimization for Double-Scattering Proton Delivery Technique Using an Eclipse Application Programming Interface and Convolutional Neural Network
por: Cheon, Wonjoong, et al.
Publicado: (2021) -
Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients
por: Cheon, Wonjoong, et al.
Publicado: (2023)