Cargando…

Microtubule destabilization caused by silicate via HDAC6 activation contributes to autophagic dysfunction in bone mesenchymal stem cells

BACKGROUND: Silicon-modified biomaterials have been extensively studied in bone tissue engineering. In recent years, the toxicity of silicon-doped biomaterials has gradually attracted attention but requires further elucidation. This study was designed to explore whether high-dose silicate can induce...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zheng, Liu, Shuhao, Fu, Tengfei, Peng, Yi, Zhang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880487/
https://www.ncbi.nlm.nih.gov/pubmed/31775910
http://dx.doi.org/10.1186/s13287-019-1441-4
Descripción
Sumario:BACKGROUND: Silicon-modified biomaterials have been extensively studied in bone tissue engineering. In recent years, the toxicity of silicon-doped biomaterials has gradually attracted attention but requires further elucidation. This study was designed to explore whether high-dose silicate can induce a cytotoxicity effect in bone mesenchymal stem cells (BMSCs) and the role of autophagy in its cytotoxicity and mechanism. METHODS: Morphologic changes and cell viability of BMSCs were detected after different doses of silicate exposure. Autophagic proteins (LC3, p62), LC3 turnover assay, and RFP-GFP-LC3 assay were applied to detect the changes of autophagic flux following silicate treatment. Furthermore, to identify the potential mechanism of autophagic dysfunction, we tested the acetyl-α-tubulin protein level and histone deacetylase 6 (HDAC6) activity after high-dose silicate exposure as well as the changes in microtubule and autophagic activity after HDAC6 siRNA was applied. RESULTS: It was found that a high dose of silicate could induce a decrease in cell viability; LC3-II and p62 simultaneously increased after high-dose silicate exposure. A high concentration of silicate could induce autophagic dysfunction and cause autophagosomes to accumulate via microtubule destabilization. Results showed that acetyl-α-tubulin decreased significantly with high-dose silicate treatment, and inhibition of HDAC6 activity can restore microtubule structure and autophagic flux. CONCLUSIONS: Microtubule destabilization caused by a high concentration of silicate via HDAC6 activation contributed to autophagic dysfunction in BMSCs, and inhibition of HDAC6 exerted a cytoprotection effect through restoration of the microtubule structure and autophagic flux.