Cargando…

Zafirlukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Reduces the Effect of Advanced Glycation End-Products in Rat Renal Mesangial Cells In Vitro

BACKGROUND: Zafirlukast is an antagonist of cysteinyl leukotriene receptor 1 (CysLTR1). Advanced glycation end-products (AGEs) are formed by the glycation of lipids and proteins in hyperglycemia, including diabetes mellitus. Zafirlukast has not previously been studied in diabetic nephropathy. This s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Liping, Sun, Ani, Xu, Xinwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880630/
https://www.ncbi.nlm.nih.gov/pubmed/31745068
http://dx.doi.org/10.12659/MSM.918187
Descripción
Sumario:BACKGROUND: Zafirlukast is an antagonist of cysteinyl leukotriene receptor 1 (CysLTR1). Advanced glycation end-products (AGEs) are formed by the glycation of lipids and proteins in hyperglycemia, including diabetes mellitus. Zafirlukast has not previously been studied in diabetic nephropathy. This study aimed to investigate the effects of zafirlukast on rat renal mesangial cells cultured with AGEs in vitro. MATERIAL/METHODS: Mesangial cells were cultured in AGEs (0, 20, 50, 100 μg/ml), and with AGEs (100 μg/ml) and zafirlukast (2.5 μm, 5 μm, and 100 μm). An enzyme-linked immunoassay (ELISA) was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1). Reactive oxygen species (ROS) were assessed by intracellular fluorescence measurement of 2′-7′-dichlorodihydrofluorescein diacetate (DCFH-DA), and detection kits were used to measure malondialdehyde (MDA), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD). Cell apoptosis was assessed by flow cytometry, and Western blot was used to measure protein levels. RESULTS: In mesangial cells cultured with AGEs, markers of inflammation, oxidative stress, and apoptosis and levels of CysLTR1 increased, and these effects were reduced by zafirlukast in a dose-dependent manner. The effects of zafirlukast as a CysLTR1 antagonist protected mesangial cells from the effects of AGE in vitro. CONCLUSIONS: Zafirlukast, a CysLTR1 antagonist, reduced the levels of inflammatory cytokines, markers of oxidative stress, and cell apoptosis induced by AGE in mesangial cells in a dose-dependent way. Future in vivo studies are needed to investigate the potential role for zafirlukast in models of diabetic nephropathy.