Cargando…

Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development

BACKGROUND & AIMS: Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel th...

Descripción completa

Detalles Bibliográficos
Autores principales: Mouries, Juliette, Brescia, Paola, Silvestri, Alessandra, Spadoni, Ilaria, Sorribas, Marcel, Wiest, Reiner, Mileti, Erika, Galbiati, Marianna, Invernizzi, Pietro, Adorini, Luciano, Penna, Giuseppe, Rescigno, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880766/
https://www.ncbi.nlm.nih.gov/pubmed/31419514
http://dx.doi.org/10.1016/j.jhep.2019.08.005
_version_ 1783473825821753344
author Mouries, Juliette
Brescia, Paola
Silvestri, Alessandra
Spadoni, Ilaria
Sorribas, Marcel
Wiest, Reiner
Mileti, Erika
Galbiati, Marianna
Invernizzi, Pietro
Adorini, Luciano
Penna, Giuseppe
Rescigno, Maria
author_facet Mouries, Juliette
Brescia, Paola
Silvestri, Alessandra
Spadoni, Ilaria
Sorribas, Marcel
Wiest, Reiner
Mileti, Erika
Galbiati, Marianna
Invernizzi, Pietro
Adorini, Luciano
Penna, Giuseppe
Rescigno, Maria
author_sort Mouries, Juliette
collection PubMed
description BACKGROUND & AIMS: Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel the role of both intestinal barrier integrity and microbiota in NAFLD/NASH development. METHODS: C57BL/6J mice were fed with high-fat diet (HFD) or methionine-choline-deficient diet for 1 week or longer to recapitulate aspects of NASH (steatosis, inflammation, insulin resistance). Genetic and pharmacological strategies were then used to modulate intestinal barrier integrity. RESULTS: We show that disruption of the intestinal epithelial barrier and gut vascular barrier (GVB) are early events in NASH pathogenesis. Mice fed HFD for only 1 week undergo a diet-induced dysbiosis that drives GVB damage and bacterial translocation into the liver. Fecal microbiota transplantation from HFD-fed mice into specific pathogen-free recipients induces GVB damage and epididymal adipose tissue enlargement. GVB disruption depends on interference with the WNT/β-catenin signaling pathway, as shown by genetic intervention driving β-catenin activation only in endothelial cells, preventing GVB disruption and NASH development. The bile acid analogue and farnesoid X receptor agonist obeticholic acid (OCA) drives β-catenin activation in endothelial cells. Accordingly, pharmacologic intervention with OCA protects against GVB disruption, both as a preventive and therapeutic agent. Importantly, we found upregulation of the GVB leakage marker in the colon of patients with NASH. CONCLUSIONS: We have identified a new player in NASH development, the GVB, whose damage leads to bacteria or bacterial product translocation into the blood circulation. Treatment aimed at restoring β-catenin activation in endothelial cells, such as administration of OCA, protects against GVB damage and NASH development. LAY SUMMARY: The incidence of fatty liver disease is reaching epidemic levels in the USA, with more than 30% of adults having NAFLD (non-alcoholic fatty liver disease), which can progress to more severe non-alcoholic steatohepatitis (NASH). Herein, we show that disruption of the intestinal epithelial barrier and gut vascular barrier are early events in the development of NASH. We show that the drug obeticholic acid protects against barrier disruption and thereby prevents the development of NASH, providing further evidence for its use in the prevention or treatment of NASH.
format Online
Article
Text
id pubmed-6880766
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68807662019-12-01 Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development Mouries, Juliette Brescia, Paola Silvestri, Alessandra Spadoni, Ilaria Sorribas, Marcel Wiest, Reiner Mileti, Erika Galbiati, Marianna Invernizzi, Pietro Adorini, Luciano Penna, Giuseppe Rescigno, Maria J Hepatol Article BACKGROUND & AIMS: Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel the role of both intestinal barrier integrity and microbiota in NAFLD/NASH development. METHODS: C57BL/6J mice were fed with high-fat diet (HFD) or methionine-choline-deficient diet for 1 week or longer to recapitulate aspects of NASH (steatosis, inflammation, insulin resistance). Genetic and pharmacological strategies were then used to modulate intestinal barrier integrity. RESULTS: We show that disruption of the intestinal epithelial barrier and gut vascular barrier (GVB) are early events in NASH pathogenesis. Mice fed HFD for only 1 week undergo a diet-induced dysbiosis that drives GVB damage and bacterial translocation into the liver. Fecal microbiota transplantation from HFD-fed mice into specific pathogen-free recipients induces GVB damage and epididymal adipose tissue enlargement. GVB disruption depends on interference with the WNT/β-catenin signaling pathway, as shown by genetic intervention driving β-catenin activation only in endothelial cells, preventing GVB disruption and NASH development. The bile acid analogue and farnesoid X receptor agonist obeticholic acid (OCA) drives β-catenin activation in endothelial cells. Accordingly, pharmacologic intervention with OCA protects against GVB disruption, both as a preventive and therapeutic agent. Importantly, we found upregulation of the GVB leakage marker in the colon of patients with NASH. CONCLUSIONS: We have identified a new player in NASH development, the GVB, whose damage leads to bacteria or bacterial product translocation into the blood circulation. Treatment aimed at restoring β-catenin activation in endothelial cells, such as administration of OCA, protects against GVB damage and NASH development. LAY SUMMARY: The incidence of fatty liver disease is reaching epidemic levels in the USA, with more than 30% of adults having NAFLD (non-alcoholic fatty liver disease), which can progress to more severe non-alcoholic steatohepatitis (NASH). Herein, we show that disruption of the intestinal epithelial barrier and gut vascular barrier are early events in the development of NASH. We show that the drug obeticholic acid protects against barrier disruption and thereby prevents the development of NASH, providing further evidence for its use in the prevention or treatment of NASH. Elsevier 2019-12 /pmc/articles/PMC6880766/ /pubmed/31419514 http://dx.doi.org/10.1016/j.jhep.2019.08.005 Text en © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Mouries, Juliette
Brescia, Paola
Silvestri, Alessandra
Spadoni, Ilaria
Sorribas, Marcel
Wiest, Reiner
Mileti, Erika
Galbiati, Marianna
Invernizzi, Pietro
Adorini, Luciano
Penna, Giuseppe
Rescigno, Maria
Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
title Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
title_full Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
title_fullStr Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
title_full_unstemmed Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
title_short Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
title_sort microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880766/
https://www.ncbi.nlm.nih.gov/pubmed/31419514
http://dx.doi.org/10.1016/j.jhep.2019.08.005
work_keys_str_mv AT mouriesjuliette microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT bresciapaola microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT silvestrialessandra microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT spadoniilaria microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT sorribasmarcel microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT wiestreiner microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT miletierika microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT galbiatimarianna microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT invernizzipietro microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT adoriniluciano microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT pennagiuseppe microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment
AT rescignomaria microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment