Cargando…
Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development
BACKGROUND & AIMS: Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel th...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880766/ https://www.ncbi.nlm.nih.gov/pubmed/31419514 http://dx.doi.org/10.1016/j.jhep.2019.08.005 |
_version_ | 1783473825821753344 |
---|---|
author | Mouries, Juliette Brescia, Paola Silvestri, Alessandra Spadoni, Ilaria Sorribas, Marcel Wiest, Reiner Mileti, Erika Galbiati, Marianna Invernizzi, Pietro Adorini, Luciano Penna, Giuseppe Rescigno, Maria |
author_facet | Mouries, Juliette Brescia, Paola Silvestri, Alessandra Spadoni, Ilaria Sorribas, Marcel Wiest, Reiner Mileti, Erika Galbiati, Marianna Invernizzi, Pietro Adorini, Luciano Penna, Giuseppe Rescigno, Maria |
author_sort | Mouries, Juliette |
collection | PubMed |
description | BACKGROUND & AIMS: Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel the role of both intestinal barrier integrity and microbiota in NAFLD/NASH development. METHODS: C57BL/6J mice were fed with high-fat diet (HFD) or methionine-choline-deficient diet for 1 week or longer to recapitulate aspects of NASH (steatosis, inflammation, insulin resistance). Genetic and pharmacological strategies were then used to modulate intestinal barrier integrity. RESULTS: We show that disruption of the intestinal epithelial barrier and gut vascular barrier (GVB) are early events in NASH pathogenesis. Mice fed HFD for only 1 week undergo a diet-induced dysbiosis that drives GVB damage and bacterial translocation into the liver. Fecal microbiota transplantation from HFD-fed mice into specific pathogen-free recipients induces GVB damage and epididymal adipose tissue enlargement. GVB disruption depends on interference with the WNT/β-catenin signaling pathway, as shown by genetic intervention driving β-catenin activation only in endothelial cells, preventing GVB disruption and NASH development. The bile acid analogue and farnesoid X receptor agonist obeticholic acid (OCA) drives β-catenin activation in endothelial cells. Accordingly, pharmacologic intervention with OCA protects against GVB disruption, both as a preventive and therapeutic agent. Importantly, we found upregulation of the GVB leakage marker in the colon of patients with NASH. CONCLUSIONS: We have identified a new player in NASH development, the GVB, whose damage leads to bacteria or bacterial product translocation into the blood circulation. Treatment aimed at restoring β-catenin activation in endothelial cells, such as administration of OCA, protects against GVB damage and NASH development. LAY SUMMARY: The incidence of fatty liver disease is reaching epidemic levels in the USA, with more than 30% of adults having NAFLD (non-alcoholic fatty liver disease), which can progress to more severe non-alcoholic steatohepatitis (NASH). Herein, we show that disruption of the intestinal epithelial barrier and gut vascular barrier are early events in the development of NASH. We show that the drug obeticholic acid protects against barrier disruption and thereby prevents the development of NASH, providing further evidence for its use in the prevention or treatment of NASH. |
format | Online Article Text |
id | pubmed-6880766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68807662019-12-01 Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development Mouries, Juliette Brescia, Paola Silvestri, Alessandra Spadoni, Ilaria Sorribas, Marcel Wiest, Reiner Mileti, Erika Galbiati, Marianna Invernizzi, Pietro Adorini, Luciano Penna, Giuseppe Rescigno, Maria J Hepatol Article BACKGROUND & AIMS: Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel the role of both intestinal barrier integrity and microbiota in NAFLD/NASH development. METHODS: C57BL/6J mice were fed with high-fat diet (HFD) or methionine-choline-deficient diet for 1 week or longer to recapitulate aspects of NASH (steatosis, inflammation, insulin resistance). Genetic and pharmacological strategies were then used to modulate intestinal barrier integrity. RESULTS: We show that disruption of the intestinal epithelial barrier and gut vascular barrier (GVB) are early events in NASH pathogenesis. Mice fed HFD for only 1 week undergo a diet-induced dysbiosis that drives GVB damage and bacterial translocation into the liver. Fecal microbiota transplantation from HFD-fed mice into specific pathogen-free recipients induces GVB damage and epididymal adipose tissue enlargement. GVB disruption depends on interference with the WNT/β-catenin signaling pathway, as shown by genetic intervention driving β-catenin activation only in endothelial cells, preventing GVB disruption and NASH development. The bile acid analogue and farnesoid X receptor agonist obeticholic acid (OCA) drives β-catenin activation in endothelial cells. Accordingly, pharmacologic intervention with OCA protects against GVB disruption, both as a preventive and therapeutic agent. Importantly, we found upregulation of the GVB leakage marker in the colon of patients with NASH. CONCLUSIONS: We have identified a new player in NASH development, the GVB, whose damage leads to bacteria or bacterial product translocation into the blood circulation. Treatment aimed at restoring β-catenin activation in endothelial cells, such as administration of OCA, protects against GVB damage and NASH development. LAY SUMMARY: The incidence of fatty liver disease is reaching epidemic levels in the USA, with more than 30% of adults having NAFLD (non-alcoholic fatty liver disease), which can progress to more severe non-alcoholic steatohepatitis (NASH). Herein, we show that disruption of the intestinal epithelial barrier and gut vascular barrier are early events in the development of NASH. We show that the drug obeticholic acid protects against barrier disruption and thereby prevents the development of NASH, providing further evidence for its use in the prevention or treatment of NASH. Elsevier 2019-12 /pmc/articles/PMC6880766/ /pubmed/31419514 http://dx.doi.org/10.1016/j.jhep.2019.08.005 Text en © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Mouries, Juliette Brescia, Paola Silvestri, Alessandra Spadoni, Ilaria Sorribas, Marcel Wiest, Reiner Mileti, Erika Galbiati, Marianna Invernizzi, Pietro Adorini, Luciano Penna, Giuseppe Rescigno, Maria Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
title | Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
title_full | Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
title_fullStr | Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
title_full_unstemmed | Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
title_short | Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
title_sort | microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880766/ https://www.ncbi.nlm.nih.gov/pubmed/31419514 http://dx.doi.org/10.1016/j.jhep.2019.08.005 |
work_keys_str_mv | AT mouriesjuliette microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT bresciapaola microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT silvestrialessandra microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT spadoniilaria microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT sorribasmarcel microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT wiestreiner microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT miletierika microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT galbiatimarianna microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT invernizzipietro microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT adoriniluciano microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT pennagiuseppe microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment AT rescignomaria microbiotadrivengutvascularbarrierdisruptionisaprerequisitefornonalcoholicsteatohepatitisdevelopment |