Cargando…

A combinatorial approach to improving the performance of azoarene photoswitches

Azoarenes remain privileged photoswitches – molecules that can be interconverted between two states using light – enabling a huge range of light addressable multifunctional systems and materials. Two key innovations to improve the addressability and Z-isomer stability of the azoarenes have been orth...

Descripción completa

Detalles Bibliográficos
Autores principales: Calbo, Joaquin, Thawani, Aditya R, Gibson, Rosina S L, White, Andrew J P, Fuchter, Matthew J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880842/
https://www.ncbi.nlm.nih.gov/pubmed/31807208
http://dx.doi.org/10.3762/bjoc.15.266
Descripción
Sumario:Azoarenes remain privileged photoswitches – molecules that can be interconverted between two states using light – enabling a huge range of light addressable multifunctional systems and materials. Two key innovations to improve the addressability and Z-isomer stability of the azoarenes have been ortho-substitution of the benzene ring(s) or replacement of one of the benzenes for a pyrazole (to give arylazopyrazole switches). Here we study the combination of such high-performance features within a single switch architecture. Through computational analysis and experimental measurements of representative examples, we demonstrate that ortho-benzene substitution of the arylazopyrazoles drastically increases the Z-isomer stability and allows further tuning of their addressability. This includes the discovery of new azopyrazoles with a Z-isomer thermal half-life of ≈46 years. Such results therefore define improved designs for high performance azo switches, which will allow for high precision optically addressable applications using such components.