Cargando…
Detecting and quantifying causal associations in large nonlinear time series datasets
Identifying causal relationships and quantifying their strength from observational time series data are key problems in disciplines dealing with complex dynamical systems such as the Earth system or the human body. Data-driven causal inference in such systems is challenging since datasets are often...
Autores principales: | Runge, Jakob, Nowack, Peer, Kretschmer, Marlene, Flaxman, Seth, Sejdinovic, Dino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881151/ https://www.ncbi.nlm.nih.gov/pubmed/31807692 http://dx.doi.org/10.1126/sciadv.aau4996 |
Ejemplares similares
-
Spatial mapping with Gaussian processes and nonstationary Fourier features
por: Ton, Jean-Francois, et al.
Publicado: (2018) -
Causal networks for climate model evaluation and constrained projections
por: Nowack, Peer, et al.
Publicado: (2020) -
A perspective on Gaussian processes for Earth observation
por: Camps-Valls, Gustau, et al.
Publicado: (2019) -
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
por: Ma, Huanfei, et al.
Publicado: (2014) -
Unrepresentative big surveys significantly overestimated US vaccine uptake
por: Bradley, Valerie C., et al.
Publicado: (2021)