Cargando…
Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland’s Northern Volcanic Zone
Seismic noise interferometry is an exciting technique for studying volcanoes, providing a continuous measurement of seismic velocity changes (dv/v), which are sensitive to magmatic processes that affect the surrounding crust. However, understanding the exact mechanisms causing changes in dv/v is oft...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881157/ https://www.ncbi.nlm.nih.gov/pubmed/31807704 http://dx.doi.org/10.1126/sciadv.aax6642 |
Sumario: | Seismic noise interferometry is an exciting technique for studying volcanoes, providing a continuous measurement of seismic velocity changes (dv/v), which are sensitive to magmatic processes that affect the surrounding crust. However, understanding the exact mechanisms causing changes in dv/v is often difficult. We present dv/v measurements over 10 years in central Iceland, measured using single-station cross-component correlation functions from 51 instruments across a range of frequency bands. We observe a linear correlation between changes in dv/v and volumetric strain at stations in regions of both compression and dilatation associated with the 2014 Bárðarbunga-Holuhraun dike intrusion. Furthermore, a clear seasonal cycle in dv/v is modeled as resulting from elastic and poroelastic responses to changing snow thickness, atmospheric pressure, and groundwater level. This study comprehensively explains variations in dv/v arising from diverse crustal stresses and highlights the importance of deformation modeling when interpreting dv/v, with implications for volcano and environmental monitoring worldwide. |
---|