Cargando…
Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses
PURPOSE: Inhomogeneous magnetization transfer (ihMT) is an emerging form of MRI contrast that may offer high specificity for myelinated tissue. Existing ihMT and pulsed MT sequences often use separate radiofrequency pulses for saturation and signal excitation. This study investigates the use of nons...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881187/ https://www.ncbi.nlm.nih.gov/pubmed/31538361 http://dx.doi.org/10.1002/mrm.27984 |
_version_ | 1783473895732412416 |
---|---|
author | Malik, Shaihan J. Teixeira, Rui P. A. G. West, Daniel J. Wood, Tobias C. Hajnal, Joseph V. |
author_facet | Malik, Shaihan J. Teixeira, Rui P. A. G. West, Daniel J. Wood, Tobias C. Hajnal, Joseph V. |
author_sort | Malik, Shaihan J. |
collection | PubMed |
description | PURPOSE: Inhomogeneous magnetization transfer (ihMT) is an emerging form of MRI contrast that may offer high specificity for myelinated tissue. Existing ihMT and pulsed MT sequences often use separate radiofrequency pulses for saturation and signal excitation. This study investigates the use of nonselective multiband radiofrequency pulses for simultaneous off‐resonance saturation and on‐resonance excitation specifically for generation of ihMT contrast within rapid steady‐state pulse sequences. THEORY AND METHODS: A matrix‐based signal modeling approach was developed and applied for both balanced steady state free precession and spoiled gradient echo sequences, accounting specifically for multiband pulses. Phantom experiments were performed using a combination of balanced steady state free precession and spoiled gradient echo sequences, and compared with model fits. A human brain imaging exam was performed using balanced steady state free precession sequences to demonstrate the achieved contrast. RESULTS: A simple signal model derived assuming instantaneous radiofrequency pulses was shown to agree well with full integration of the governing equations and provided fits to phantom data for materials with strong ihMT contrast (PL161 root mean square error = 0.9%, and hair conditioner root mean square error = 2.4%). In vivo ihMT ratio images showed the expected white matter contrast that has been seen by other ihMT investigations, and the observed ihMT ratios corresponded well with predictions. CONCLUSIONS: ihMT contrast can be generated by integrating multiband radiofrequency pulses directly into both spoiled gradient echo and balanced steady state free precession sequences, and the presented signal modeling approach can be used to understand the acquired signals. |
format | Online Article Text |
id | pubmed-6881187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68811872019-12-19 Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses Malik, Shaihan J. Teixeira, Rui P. A. G. West, Daniel J. Wood, Tobias C. Hajnal, Joseph V. Magn Reson Med Full Papers—Imaging Methodology PURPOSE: Inhomogeneous magnetization transfer (ihMT) is an emerging form of MRI contrast that may offer high specificity for myelinated tissue. Existing ihMT and pulsed MT sequences often use separate radiofrequency pulses for saturation and signal excitation. This study investigates the use of nonselective multiband radiofrequency pulses for simultaneous off‐resonance saturation and on‐resonance excitation specifically for generation of ihMT contrast within rapid steady‐state pulse sequences. THEORY AND METHODS: A matrix‐based signal modeling approach was developed and applied for both balanced steady state free precession and spoiled gradient echo sequences, accounting specifically for multiband pulses. Phantom experiments were performed using a combination of balanced steady state free precession and spoiled gradient echo sequences, and compared with model fits. A human brain imaging exam was performed using balanced steady state free precession sequences to demonstrate the achieved contrast. RESULTS: A simple signal model derived assuming instantaneous radiofrequency pulses was shown to agree well with full integration of the governing equations and provided fits to phantom data for materials with strong ihMT contrast (PL161 root mean square error = 0.9%, and hair conditioner root mean square error = 2.4%). In vivo ihMT ratio images showed the expected white matter contrast that has been seen by other ihMT investigations, and the observed ihMT ratios corresponded well with predictions. CONCLUSIONS: ihMT contrast can be generated by integrating multiband radiofrequency pulses directly into both spoiled gradient echo and balanced steady state free precession sequences, and the presented signal modeling approach can be used to understand the acquired signals. John Wiley and Sons Inc. 2019-09-19 2020-03 /pmc/articles/PMC6881187/ /pubmed/31538361 http://dx.doi.org/10.1002/mrm.27984 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers—Imaging Methodology Malik, Shaihan J. Teixeira, Rui P. A. G. West, Daniel J. Wood, Tobias C. Hajnal, Joseph V. Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
title | Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
title_full | Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
title_fullStr | Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
title_full_unstemmed | Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
title_short | Steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
title_sort | steady‐state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses |
topic | Full Papers—Imaging Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881187/ https://www.ncbi.nlm.nih.gov/pubmed/31538361 http://dx.doi.org/10.1002/mrm.27984 |
work_keys_str_mv | AT malikshaihanj steadystateimagingwithinhomogeneousmagnetizationtransfercontrastusingmultibandradiofrequencypulses AT teixeiraruipag steadystateimagingwithinhomogeneousmagnetizationtransfercontrastusingmultibandradiofrequencypulses AT westdanielj steadystateimagingwithinhomogeneousmagnetizationtransfercontrastusingmultibandradiofrequencypulses AT woodtobiasc steadystateimagingwithinhomogeneousmagnetizationtransfercontrastusingmultibandradiofrequencypulses AT hajnaljosephv steadystateimagingwithinhomogeneousmagnetizationtransfercontrastusingmultibandradiofrequencypulses |