Cargando…
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
Recent technological advances in remote sensing sensors and platforms, such as high-resolution satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are n...
Autores principales: | Kattenborn, Teja, Eichel, Jana, Fassnacht, Fabian Ewald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881311/ https://www.ncbi.nlm.nih.gov/pubmed/31776370 http://dx.doi.org/10.1038/s41598-019-53797-9 |
Ejemplares similares
-
Automated mapping of Portulacaria afra canopies for restoration monitoring with convolutional neural networks and heterogeneous unmanned aerial vehicle imagery
por: Galuszynski, Nicholas C., et al.
Publicado: (2022) -
A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990–2018
por: Fassnacht, Fabian Ewald, et al.
Publicado: (2019) -
A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery
por: Lobo Torres, Daliana, et al.
Publicado: (2020)