Cargando…

Brain age prediction using deep learning uncovers associated sequence variants

Machine learning algorithms can be trained to estimate age from brain structural MRI. The difference between an individual’s predicted and chronological age, predicted age difference (PAD), is a phenotype of relevance to aging and brain disease. Here, we present a new deep learning approach to predi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jonsson, B. A., Bjornsdottir, G., Thorgeirsson, T. E., Ellingsen, L. M., Walters, G. Bragi, Gudbjartsson, D. F., Stefansson, H., Stefansson, K., Ulfarsson, M. O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321/
https://www.ncbi.nlm.nih.gov/pubmed/31776335
http://dx.doi.org/10.1038/s41467-019-13163-9
_version_ 1783473921535770624
author Jonsson, B. A.
Bjornsdottir, G.
Thorgeirsson, T. E.
Ellingsen, L. M.
Walters, G. Bragi
Gudbjartsson, D. F.
Stefansson, H.
Stefansson, K.
Ulfarsson, M. O.
author_facet Jonsson, B. A.
Bjornsdottir, G.
Thorgeirsson, T. E.
Ellingsen, L. M.
Walters, G. Bragi
Gudbjartsson, D. F.
Stefansson, H.
Stefansson, K.
Ulfarsson, M. O.
author_sort Jonsson, B. A.
collection PubMed
description Machine learning algorithms can be trained to estimate age from brain structural MRI. The difference between an individual’s predicted and chronological age, predicted age difference (PAD), is a phenotype of relevance to aging and brain disease. Here, we present a new deep learning approach to predict brain age from a T1-weighted MRI. The method was trained on a dataset of healthy Icelanders and tested on two datasets, IXI and UK Biobank, utilizing transfer learning to improve accuracy on new sites. A genome-wide association study (GWAS) of PAD in the UK Biobank data (discovery set: [Formula: see text] , replication set: [Formula: see text] ) yielded two sequence variants, rs1452628-T ([Formula: see text] , [Formula: see text] ) and rs2435204-G ([Formula: see text] , [Formula: see text] ). The former is near KCNK2 and correlates with reduced sulcal width, whereas the latter correlates with reduced white matter surface area and tags a well-known inversion at 17q21.31 (H2).
format Online
Article
Text
id pubmed-6881321
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68813212019-11-29 Brain age prediction using deep learning uncovers associated sequence variants Jonsson, B. A. Bjornsdottir, G. Thorgeirsson, T. E. Ellingsen, L. M. Walters, G. Bragi Gudbjartsson, D. F. Stefansson, H. Stefansson, K. Ulfarsson, M. O. Nat Commun Article Machine learning algorithms can be trained to estimate age from brain structural MRI. The difference between an individual’s predicted and chronological age, predicted age difference (PAD), is a phenotype of relevance to aging and brain disease. Here, we present a new deep learning approach to predict brain age from a T1-weighted MRI. The method was trained on a dataset of healthy Icelanders and tested on two datasets, IXI and UK Biobank, utilizing transfer learning to improve accuracy on new sites. A genome-wide association study (GWAS) of PAD in the UK Biobank data (discovery set: [Formula: see text] , replication set: [Formula: see text] ) yielded two sequence variants, rs1452628-T ([Formula: see text] , [Formula: see text] ) and rs2435204-G ([Formula: see text] , [Formula: see text] ). The former is near KCNK2 and correlates with reduced sulcal width, whereas the latter correlates with reduced white matter surface area and tags a well-known inversion at 17q21.31 (H2). Nature Publishing Group UK 2019-11-27 /pmc/articles/PMC6881321/ /pubmed/31776335 http://dx.doi.org/10.1038/s41467-019-13163-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Jonsson, B. A.
Bjornsdottir, G.
Thorgeirsson, T. E.
Ellingsen, L. M.
Walters, G. Bragi
Gudbjartsson, D. F.
Stefansson, H.
Stefansson, K.
Ulfarsson, M. O.
Brain age prediction using deep learning uncovers associated sequence variants
title Brain age prediction using deep learning uncovers associated sequence variants
title_full Brain age prediction using deep learning uncovers associated sequence variants
title_fullStr Brain age prediction using deep learning uncovers associated sequence variants
title_full_unstemmed Brain age prediction using deep learning uncovers associated sequence variants
title_short Brain age prediction using deep learning uncovers associated sequence variants
title_sort brain age prediction using deep learning uncovers associated sequence variants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321/
https://www.ncbi.nlm.nih.gov/pubmed/31776335
http://dx.doi.org/10.1038/s41467-019-13163-9
work_keys_str_mv AT jonssonba brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT bjornsdottirg brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT thorgeirssonte brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT ellingsenlm brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT waltersgbragi brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT gudbjartssondf brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT stefanssonh brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT stefanssonk brainagepredictionusingdeeplearninguncoversassociatedsequencevariants
AT ulfarssonmo brainagepredictionusingdeeplearninguncoversassociatedsequencevariants