Cargando…

Crustal growth and reworking: A case study from the Erguna Massif, eastern Central Asian Orogenic Belt

Despite being the largest accretionary orogen on Earth, the record of crustal growth and reworking of individual microcontinental massifs within the Central Asian Orogenic Belt (CAOB) remain poorly constrained. Here, we focus on zircon records from granitoids in the Erguna Massif to discuss its crus...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Chenyang, Xu, Wenliang, Cawood, Peter A., Tang, Jie, Zhao, Shuo, Li, Yu, Zhang, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881325/
https://www.ncbi.nlm.nih.gov/pubmed/31776438
http://dx.doi.org/10.1038/s41598-019-54230-x
Descripción
Sumario:Despite being the largest accretionary orogen on Earth, the record of crustal growth and reworking of individual microcontinental massifs within the Central Asian Orogenic Belt (CAOB) remain poorly constrained. Here, we focus on zircon records from granitoids in the Erguna Massif to discuss its crustal evolution through time. Proterozoic–Mesozoic granitoids are widespread in the Erguna Massif, and spatiotemporal variations in their zircon ε(Hf)(t) values and T(DM2)(Hf) ages reveal the crustal heterogeneity of the massif. Crustal growth curve demonstrates that the initial crust formed in the Mesoarchean, and shows a step-like pattern with three growth periods: 2.9–2.7, 2.1–1.9, and 1.7–0.5 Ga. This suggests that microcontinental massifs in the eastern CAOB have Precambrian basement, contradicting the hypothesis of significant crustal growth during the Phanerozoic. Phases of growth are constrained by multiple tectonic settings related to supercontinent development. Calculated reworked crustal proportions and the reworking curve indicate four reworking periods at 1.86–1.78 Ga, 860–720 Ma, 500–440 Ma, and 300–120 Ma, which limited the growth rate. These periods of reworking account for the crustal heterogeneity of the Erguna Massif.