Cargando…
Physics-informed Deep Learning for Dual-Energy Computed Tomography Image Processing
Dual-energy CT (DECT) was introduced to address the inability of conventional single-energy computed tomography (SECT) to distinguish materials with similar absorbances but different elemental compositions. However, material decomposition algorithms based purely on the physics of the underlying atte...
Autores principales: | Poirot, Maarten G., Bergmans, Rick H. J., Thomson, Bart R., Jolink, Florine C., Moum, Sarah J., Gonzalez, Ramon G., Lev, Michael H., Tan, Can Ozan, Gupta, Rajiv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881337/ https://www.ncbi.nlm.nih.gov/pubmed/31776423 http://dx.doi.org/10.1038/s41598-019-54176-0 |
Ejemplares similares
-
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
por: Mazzaglia, Pietro, et al.
Publicado: (2022) -
Future of Low-Dose Computed Tomography and Dual-Energy Computed Tomography in Axial Spondyloarthritis
por: Diekhoff, Torsten, et al.
Publicado: (2022) -
The Clinical Impact of Accurate Cystine Calculi Characterization Using Dual-Energy Computed Tomography
por: Haley, William E., et al.
Publicado: (2015) -
Clinical implementation of electric impedance tomography in the treatment of ARDS: a single centre experience
por: Heines, Serge J. H., et al.
Publicado: (2018) -
Deep learning model-assisted detection of kidney stones on computed tomography
por: Caglayan, Alper, et al.
Publicado: (2022)