Cargando…
RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning
The majority of our human genome transcribes into noncoding RNAs with unknown structures and functions. Obtaining functional clues for noncoding RNAs requires accurate base-pairing or secondary-structure prediction. However, the performance of such predictions by current folding-based algorithms has...
Autores principales: | Singh, Jaswinder, Hanson, Jack, Paliwal, Kuldip, Zhou, Yaoqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881452/ https://www.ncbi.nlm.nih.gov/pubmed/31776342 http://dx.doi.org/10.1038/s41467-019-13395-9 |
Ejemplares similares
-
SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning
por: Hanson, Jack, et al.
Publicado: (2019) -
Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling
por: Singh, Jaswinder, et al.
Publicado: (2022) -
Reaching alignment-profile-based accuracy in predicting protein secondary and tertiary structural properties without alignment
por: Singh, Jaspreet, et al.
Publicado: (2022) -
SPOT-Contact-LM: improving single-sequence-based prediction of protein contact map using a transformer language model
por: Singh, Jaspreet, et al.
Publicado: (2022) -
Sixty-five years of the long march in protein secondary structure prediction: the final stretch?
por: Yang, Yuedong, et al.
Publicado: (2016)