Cargando…
Wide field imaging energy dispersive X-ray absorption spectroscopy
A new energy dispersive X-ray absorption spectroscopy (EDXAS) method is presented for simultaneous wide-field imaging and transmission X-ray absorption spectroscopy (XAS) to enable rapid imaging and speciation of elements. Based on spectral K-Edge Subtraction imaging (sKES), a bent Laue imaging syst...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881466/ https://www.ncbi.nlm.nih.gov/pubmed/31776410 http://dx.doi.org/10.1038/s41598-019-54287-8 |
Sumario: | A new energy dispersive X-ray absorption spectroscopy (EDXAS) method is presented for simultaneous wide-field imaging and transmission X-ray absorption spectroscopy (XAS) to enable rapid imaging and speciation of elements. Based on spectral K-Edge Subtraction imaging (sKES), a bent Laue imaging system diffracting in the vertical plane was developed on a bend magnet beamline for selenium speciation. The high flux and small vertical focus, forming a wide horizontal line beam for projection imaging and computed tomography applications, is achieved by precise matching of lattice plane orientation and crystal surface (asymmetry angle). The condition generating a small vertical focus for imaging also provides good energy dispersion. Details for achieving sufficient energy and spatial resolution are demonstrated for both full field imaging and computed tomography in quantifying selenium chemical species. While this system has lower sensitivity as it uses transmission and may lack the flux and spatial resolution of a dedicated focused beamline system, it has significant potential in rapid screening of heterogeneous biomedical or environmental systems to correlate metal speciation with function. |
---|