Cargando…

Biofabrication And Antitumor Activity Of Silver Nanoparticles Utilizing Novel Nostoc sp. Bahar M

BACKGROUND: Over recent years, green chemistry procedures have been developed to synthesize nanoparticles in eco-friendlier and less expensive ways. These procedures use natural sources such as bacteria, fungi, yeast, plants, actinomycetes, algae, or cyanobacteria, or use biomolecules such as protei...

Descripción completa

Detalles Bibliográficos
Autores principales: Bin-Meferij, Mashael Mohammed, Hamida, Reham Samir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881505/
https://www.ncbi.nlm.nih.gov/pubmed/31819416
http://dx.doi.org/10.2147/IJN.S230457
Descripción
Sumario:BACKGROUND: Over recent years, green chemistry procedures have been developed to synthesize nanoparticles in eco-friendlier and less expensive ways. These procedures use natural sources such as bacteria, fungi, yeast, plants, actinomycetes, algae, or cyanobacteria, or use biomolecules such as proteins, vitamins, or pigments instead of chemical materials to fabricate salt precursors into nanoparticles. METHODOLOGY: In the current investigation, we developed an effective, inexpensive, nontoxic method to synthesize silver nanoparticles (SNPs) using the cellular extract of a novel strain of cyanobacterium, Nostoc sp. Bahar M. SNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The antitumor properties of the biogenic SNPs were tested against Caco-2 cells using a cell proliferation assay and inverted light microscopy. RESULTS: The new strain Nostoc sp. Bahar M was able to fabricate small SNPs from silver nitrate through an eco-friendly and inexpensive biosynthesis process. SNPs synthesis was accompanied by a color transformation from pale yellow to dark brown. Ultraviolet spectroscopy showed an absorption peak at 403 nm, confirming SNPs formation. X-ray diffraction analysis indicated that the SNPs had a face-centered cubic crystalline structure. Fourier-transform infrared spectroscopy was used to identify a protein that may play an important role in SNPs biosynthesis. Scanning and transmission electron micrographs showed that the SNPs were uniformly distributed and spherical in shape, with an average diameter of 14.9 nm. Cytotoxicity assays showed that SNPs exhibited a significant dose-dependent cytotoxic activity against human colon cancer cells with an IC(50) of 150 μg/mL. CONCLUSION: Nostoc sp. Bahar M provided an eco-friendly route for fabricating SNPs, which have cytotoxic activity toward Caco-2 cells.