Cargando…

Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p

Nonalcoholic fatty liver disease (NAFLD) is due to the excessive lipid accumulation within hepatocytes. Metabolic nuclear receptors (MNRs) play great roles in lipid homeostasis. We have identified a novel long noncoding RNA (lncRNA), lnc-HC, which regulates hepatocytic cholesterol metabolism through...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Xi, Wu, Litao, Wu, Nan, Chen, Qian, Li, Yue, Du, Xiaojuan, Wei, Chenxi, Feng, Lina, Li, Yazhao, Osoro, Ezra Kombo, Sun, Mengyao, Ning, Qilan, Yan, Xiaofei, Yang, Xudong, Li, Dongmin, Lu, Shemin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881655/
https://www.ncbi.nlm.nih.gov/pubmed/31770672
http://dx.doi.org/10.1016/j.omtn.2019.10.018
_version_ 1783473989883002880
author Lan, Xi
Wu, Litao
Wu, Nan
Chen, Qian
Li, Yue
Du, Xiaojuan
Wei, Chenxi
Feng, Lina
Li, Yazhao
Osoro, Ezra Kombo
Sun, Mengyao
Ning, Qilan
Yan, Xiaofei
Yang, Xudong
Li, Dongmin
Lu, Shemin
author_facet Lan, Xi
Wu, Litao
Wu, Nan
Chen, Qian
Li, Yue
Du, Xiaojuan
Wei, Chenxi
Feng, Lina
Li, Yazhao
Osoro, Ezra Kombo
Sun, Mengyao
Ning, Qilan
Yan, Xiaofei
Yang, Xudong
Li, Dongmin
Lu, Shemin
author_sort Lan, Xi
collection PubMed
description Nonalcoholic fatty liver disease (NAFLD) is due to the excessive lipid accumulation within hepatocytes. Metabolic nuclear receptors (MNRs) play great roles in lipid homeostasis. We have identified a novel long noncoding RNA (lncRNA), lnc-HC, which regulates hepatocytic cholesterol metabolism through reducing Cyp7a1 and Abca1 expression. Here, we further elucidate its roles in hepatic fatty acid and triglyceride (TG) metabolism through a novel lncRNA regulatory mechanism. The most prominent target of lnc-HC identified by in vitro study is PPARγ. Further studies revealed that lnc-HC negatively regulates PPARγ at both the mRNA and protein levels and suppresses hepatocytic lipid droplet formation. Importantly, the function of lnc-HC in regulating PPARγ expression depends on modulating miR-130b-3p expression from the transcriptional to the post-transcriptional level, not through lncRNA’s critical modulating patterns. In vivo, the reduction of lnc-HC expression significantly decreases miR-130b-3p expression, induces PPARγ expression, and increases TG concentration in rat livers with hyperlipidemia. These findings further help in understanding the regulatory pattern of lnc-HC in hepatic lipid metabolism and might present a possible therapeutic target for improving lipid homeostasis.
format Online
Article
Text
id pubmed-6881655
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society of Gene & Cell Therapy
record_format MEDLINE/PubMed
spelling pubmed-68816552019-11-29 Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p Lan, Xi Wu, Litao Wu, Nan Chen, Qian Li, Yue Du, Xiaojuan Wei, Chenxi Feng, Lina Li, Yazhao Osoro, Ezra Kombo Sun, Mengyao Ning, Qilan Yan, Xiaofei Yang, Xudong Li, Dongmin Lu, Shemin Mol Ther Nucleic Acids Article Nonalcoholic fatty liver disease (NAFLD) is due to the excessive lipid accumulation within hepatocytes. Metabolic nuclear receptors (MNRs) play great roles in lipid homeostasis. We have identified a novel long noncoding RNA (lncRNA), lnc-HC, which regulates hepatocytic cholesterol metabolism through reducing Cyp7a1 and Abca1 expression. Here, we further elucidate its roles in hepatic fatty acid and triglyceride (TG) metabolism through a novel lncRNA regulatory mechanism. The most prominent target of lnc-HC identified by in vitro study is PPARγ. Further studies revealed that lnc-HC negatively regulates PPARγ at both the mRNA and protein levels and suppresses hepatocytic lipid droplet formation. Importantly, the function of lnc-HC in regulating PPARγ expression depends on modulating miR-130b-3p expression from the transcriptional to the post-transcriptional level, not through lncRNA’s critical modulating patterns. In vivo, the reduction of lnc-HC expression significantly decreases miR-130b-3p expression, induces PPARγ expression, and increases TG concentration in rat livers with hyperlipidemia. These findings further help in understanding the regulatory pattern of lnc-HC in hepatic lipid metabolism and might present a possible therapeutic target for improving lipid homeostasis. American Society of Gene & Cell Therapy 2019-10-25 /pmc/articles/PMC6881655/ /pubmed/31770672 http://dx.doi.org/10.1016/j.omtn.2019.10.018 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Lan, Xi
Wu, Litao
Wu, Nan
Chen, Qian
Li, Yue
Du, Xiaojuan
Wei, Chenxi
Feng, Lina
Li, Yazhao
Osoro, Ezra Kombo
Sun, Mengyao
Ning, Qilan
Yan, Xiaofei
Yang, Xudong
Li, Dongmin
Lu, Shemin
Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
title Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
title_full Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
title_fullStr Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
title_full_unstemmed Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
title_short Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
title_sort long noncoding rna lnc-hc regulates pparγ-mediated hepatic lipid metabolism through mir-130b-3p
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881655/
https://www.ncbi.nlm.nih.gov/pubmed/31770672
http://dx.doi.org/10.1016/j.omtn.2019.10.018
work_keys_str_mv AT lanxi longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT wulitao longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT wunan longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT chenqian longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT liyue longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT duxiaojuan longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT weichenxi longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT fenglina longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT liyazhao longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT osoroezrakombo longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT sunmengyao longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT ningqilan longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT yanxiaofei longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT yangxudong longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT lidongmin longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p
AT lushemin longnoncodingrnalnchcregulatesppargmediatedhepaticlipidmetabolismthroughmir130b3p