Cargando…

Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass

[Image: see text] Conventional atmospheric glycerol organosolv pretreatment is energy-intensive with the requirement of long time and/or high temperature. Herein, acid-catalyzed atmospheric glycerol organosolv (ac-AGO) pretreatment was developed under a mild condition to modify the sugarcane bagasse...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascal, Kaneza, Ren, Hongyan, Sun, Fubao Fuelbiol, Guo, Shuxian, Hu, Jinguang, He, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882100/
https://www.ncbi.nlm.nih.gov/pubmed/31788636
http://dx.doi.org/10.1021/acsomega.9b02993
Descripción
Sumario:[Image: see text] Conventional atmospheric glycerol organosolv pretreatment is energy-intensive with the requirement of long time and/or high temperature. Herein, acid-catalyzed atmospheric glycerol organosolv (ac-AGO) pretreatment was developed under a mild condition to modify the sugarcane bagasse structure for improving enzymatic hydrolyzability. Using single factor and central composite design experiments, ac-AGO pretreatment was optimized at 200 °C for 15 min with 0.06% H(2)SO(4) addition, wherein the hemicellulose and lignin removal rates were 82 and 52%, respectively, with extremely high cellulose retention of 98%. The ac-AGO-pretreated substrate exhibited good enzymatic hydrolyzability at a modest cellulase loading, affording a 70% glucose yield after 72 h. Multiple analysis tools were used to correlate the hydrolyzability of the substrate with its structural features. The results indicated that the mild ac-AGO pretreatment can modify the lignocellulosic biomass structure to achieve good hydrolyzability, mainly resulting in significant hemicellulose removal.