Cargando…

In Situ Self-Assembly of Ultrastable Gold Nanoparticles on Polyvinyl Alcohol Nanofibrous Mats for Use as Highly Reusable Catalysts

[Image: see text] Designing highly stable and reusable catalytic systems based on Au nanoparticles (NPs) is a significant challenge in nanocatalysis research. Here, we have fabricated polyvinyl alcohol (PVA) nanofibrous mat/Au NP composite catalysts with NPs in uniform size and good distribution by...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Lin, Xiang, Hongping, Chen, Zhengjian, Zhang, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882113/
https://www.ncbi.nlm.nih.gov/pubmed/31788644
http://dx.doi.org/10.1021/acsomega.9b03436
Descripción
Sumario:[Image: see text] Designing highly stable and reusable catalytic systems based on Au nanoparticles (NPs) is a significant challenge in nanocatalysis research. Here, we have fabricated polyvinyl alcohol (PVA) nanofibrous mat/Au NP composite catalysts with NPs in uniform size and good distribution by use of a developed in situ growth approach. In this method, Au seeds were first adsorbed on PVA nanofibrous mat surfaces rather than on relatively large Au NPs and then used to grow NPs in Au seed solution; thus, the steric hindrance effect was alleviated and a high loading was used for Au NPs up to 11 wt %. Strong interfacial interactions between the Au NPs and the PVA nanofibrous mats due to introducing a large number of hydrogen bonds provide high thermal stability for the PVA side chains, long-term catalytic stability, and excellent reusability. Consequently, the proposed in situ grown PVA/Au NP nanofibrous mats produce high catalytic activity for at least 15 cycles over a 30 d period. This work provides a potential approach for fabricating highly stable and reusable metal NPs on polymer nanofibrous mats to facilitate a wide variety of applications.