Cargando…
Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction
BACKGROUND: Recurrent neural network(RNN) is a good way to process sequential data, but the capability of RNN to compute long sequence data is inefficient. As a variant of RNN, long short term memory(LSTM) solved the problem in some extent. Here we improved LSTM for big data application in protein-p...
Autores principales: | Liu, Jiale, Gong, Xinqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882172/ https://www.ncbi.nlm.nih.gov/pubmed/31775612 http://dx.doi.org/10.1186/s12859-019-3199-1 |
Ejemplares similares
-
Identification of residue pairing in interacting β-strands from a predicted residue contact map
por: Mao, Wenzhi, et al.
Publicado: (2018) -
A Two-Layer SVM Ensemble-Classifier to Predict Interface Residue Pairs of Protein Trimers
por: Lyu, Yanfen, et al.
Publicado: (2020) -
Application of an interpretable classification model on Early Folding Residues during protein folding
por: Bittrich, Sebastian, et al.
Publicado: (2019) -
Inter-protein residue covariation information unravels physically interacting protein dimers
por: Salmanian, Sara, et al.
Publicado: (2020) -
Weighted protein residue networks based on joint recurrences between residues
por: Karain, Wael I., et al.
Publicado: (2015)