Cargando…
Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate
Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineerin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882275/ https://www.ncbi.nlm.nih.gov/pubmed/31824929 http://dx.doi.org/10.3389/fbioe.2019.00312 |
_version_ | 1783474121694248960 |
---|---|
author | Otto, Maike Wynands, Benedikt Lenzen, Christoph Filbig, Melanie Blank, Lars M. Wierckx, Nick |
author_facet | Otto, Maike Wynands, Benedikt Lenzen, Christoph Filbig, Melanie Blank, Lars M. Wierckx, Nick |
author_sort | Otto, Maike |
collection | PubMed |
description | Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol(−1) from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol(−1) from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate. |
format | Online Article Text |
id | pubmed-6882275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68822752019-12-10 Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate Otto, Maike Wynands, Benedikt Lenzen, Christoph Filbig, Melanie Blank, Lars M. Wierckx, Nick Front Bioeng Biotechnol Bioengineering and Biotechnology Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol(−1) from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol(−1) from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate. Frontiers Media S.A. 2019-11-20 /pmc/articles/PMC6882275/ /pubmed/31824929 http://dx.doi.org/10.3389/fbioe.2019.00312 Text en Copyright © 2019 Otto, Wynands, Lenzen, Filbig, Blank and Wierckx. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Otto, Maike Wynands, Benedikt Lenzen, Christoph Filbig, Melanie Blank, Lars M. Wierckx, Nick Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate |
title | Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate |
title_full | Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate |
title_fullStr | Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate |
title_full_unstemmed | Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate |
title_short | Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate |
title_sort | rational engineering of phenylalanine accumulation in pseudomonas taiwanensis to enable high-yield production of trans-cinnamate |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882275/ https://www.ncbi.nlm.nih.gov/pubmed/31824929 http://dx.doi.org/10.3389/fbioe.2019.00312 |
work_keys_str_mv | AT ottomaike rationalengineeringofphenylalanineaccumulationinpseudomonastaiwanensistoenablehighyieldproductionoftranscinnamate AT wynandsbenedikt rationalengineeringofphenylalanineaccumulationinpseudomonastaiwanensistoenablehighyieldproductionoftranscinnamate AT lenzenchristoph rationalengineeringofphenylalanineaccumulationinpseudomonastaiwanensistoenablehighyieldproductionoftranscinnamate AT filbigmelanie rationalengineeringofphenylalanineaccumulationinpseudomonastaiwanensistoenablehighyieldproductionoftranscinnamate AT blanklarsm rationalengineeringofphenylalanineaccumulationinpseudomonastaiwanensistoenablehighyieldproductionoftranscinnamate AT wierckxnick rationalengineeringofphenylalanineaccumulationinpseudomonastaiwanensistoenablehighyieldproductionoftranscinnamate |