Cargando…
Latent Dirichlet Allocation in predicting clinical trial terminations
BACKGROUND: This study used natural language processing (NLP) and machine learning (ML) techniques to identify reliable patterns from within research narrative documents to distinguish studies that complete successfully, from the ones that terminate. Recent research findings have reported that at le...
Autores principales: | Geletta, Simon, Follett, Lendie, Laugerman, Marcia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882341/ https://www.ncbi.nlm.nih.gov/pubmed/31775737 http://dx.doi.org/10.1186/s12911-019-0973-y |
Ejemplares similares
-
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023) -
Latent Dirichlet allocation model for world trade analysis
por: Kozlowski, Diego, et al.
Publicado: (2021) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Gaussian hierarchical latent Dirichlet allocation: Bringing polysemy back
por: Yoshida, Takahiro, et al.
Publicado: (2023) -
Improving Latent Dirichlet Allocation: On Reliability of the Novel Method LDAPrototype
por: Rieger, Jonas, et al.
Publicado: (2020)