Cargando…
Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study
Spasticity of the ankle reduces quality of life by impeding walking and other activities of daily living. Robot-driven continuous passive movement (CPM) is a strategy for lower limb spasticity management but effects on spasticity, walking ability and spinal cord excitability (SCE) are unknown. The o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882765/ https://www.ncbi.nlm.nih.gov/pubmed/31599345 http://dx.doi.org/10.1007/s00221-019-05662-4 |
_version_ | 1783474231855546368 |
---|---|
author | Noble, Steven Pearcey, Gregory E. P. Quartly, Caroline Zehr, E. Paul |
author_facet | Noble, Steven Pearcey, Gregory E. P. Quartly, Caroline Zehr, E. Paul |
author_sort | Noble, Steven |
collection | PubMed |
description | Spasticity of the ankle reduces quality of life by impeding walking and other activities of daily living. Robot-driven continuous passive movement (CPM) is a strategy for lower limb spasticity management but effects on spasticity, walking ability and spinal cord excitability (SCE) are unknown. The objectives of this experiment were to evaluate (1) acute changes in SCE induced by 30 min of CPM at the ankle joint, in individuals without neurological impairment and those with lower limb spasticity; and, (2) the effects of 6 weeks of CPM training on SCE, spasticity and walking ability in those with lower limb spasticity. SCE was assessed using soleus Hoffmann (H-) reflexes, collected prior to and immediately after CPM for acute assessments, whereas a multiple baseline repeated measures design assessed changes following 18 CPM sessions. Spasticity and walking ability were assessed using the Modified Ashworth Scale, the 10 m Walk test, and the Timed Up and Go test. Twenty-one neurologically intact and nine participants with spasticity (various neurological conditions) were recruited. In the neurologically intact group, CPM caused bi-directional modulation of H-reflexes creating ‘facilitation’ and ‘suppression’ groups. In contrast, amongst participants with spasticity, acute CPM facilitated H-reflexes. After CPM training, H-reflex excitability on both the more-affected and less-affected sides was reduced; on the more affected side H@Thres, H@50 and H@100 all significantly decreased following CPM training by 96.5 ± 7.7%, 90.9 ± 9.2%, and 62.9 ± 21.1%, respectively. After training there were modest improvements in walking and clinical measures of spasticity for some participants. We conclude that CPM of the ankle can significantly alter SCE. The use of CPM in those with spasticity can provide a temporary period of improved walking, but efficacy of treatment remains unknown. |
format | Online Article Text |
id | pubmed-6882765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-68827652019-12-12 Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study Noble, Steven Pearcey, Gregory E. P. Quartly, Caroline Zehr, E. Paul Exp Brain Res Research Article Spasticity of the ankle reduces quality of life by impeding walking and other activities of daily living. Robot-driven continuous passive movement (CPM) is a strategy for lower limb spasticity management but effects on spasticity, walking ability and spinal cord excitability (SCE) are unknown. The objectives of this experiment were to evaluate (1) acute changes in SCE induced by 30 min of CPM at the ankle joint, in individuals without neurological impairment and those with lower limb spasticity; and, (2) the effects of 6 weeks of CPM training on SCE, spasticity and walking ability in those with lower limb spasticity. SCE was assessed using soleus Hoffmann (H-) reflexes, collected prior to and immediately after CPM for acute assessments, whereas a multiple baseline repeated measures design assessed changes following 18 CPM sessions. Spasticity and walking ability were assessed using the Modified Ashworth Scale, the 10 m Walk test, and the Timed Up and Go test. Twenty-one neurologically intact and nine participants with spasticity (various neurological conditions) were recruited. In the neurologically intact group, CPM caused bi-directional modulation of H-reflexes creating ‘facilitation’ and ‘suppression’ groups. In contrast, amongst participants with spasticity, acute CPM facilitated H-reflexes. After CPM training, H-reflex excitability on both the more-affected and less-affected sides was reduced; on the more affected side H@Thres, H@50 and H@100 all significantly decreased following CPM training by 96.5 ± 7.7%, 90.9 ± 9.2%, and 62.9 ± 21.1%, respectively. After training there were modest improvements in walking and clinical measures of spasticity for some participants. We conclude that CPM of the ankle can significantly alter SCE. The use of CPM in those with spasticity can provide a temporary period of improved walking, but efficacy of treatment remains unknown. Springer Berlin Heidelberg 2019-10-10 2019 /pmc/articles/PMC6882765/ /pubmed/31599345 http://dx.doi.org/10.1007/s00221-019-05662-4 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Article Noble, Steven Pearcey, Gregory E. P. Quartly, Caroline Zehr, E. Paul Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
title | Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
title_full | Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
title_fullStr | Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
title_full_unstemmed | Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
title_short | Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
title_sort | robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882765/ https://www.ncbi.nlm.nih.gov/pubmed/31599345 http://dx.doi.org/10.1007/s00221-019-05662-4 |
work_keys_str_mv | AT noblesteven robotcontrolledcontinuouspassivemovementoftheanklereducesspinalcordexcitabilityinparticipantswithspasticityapilotstudy AT pearceygregoryep robotcontrolledcontinuouspassivemovementoftheanklereducesspinalcordexcitabilityinparticipantswithspasticityapilotstudy AT quartlycaroline robotcontrolledcontinuouspassivemovementoftheanklereducesspinalcordexcitabilityinparticipantswithspasticityapilotstudy AT zehrepaul robotcontrolledcontinuouspassivemovementoftheanklereducesspinalcordexcitabilityinparticipantswithspasticityapilotstudy |