Cargando…
The art of using t-SNE for single-cell transcriptomics
Single-cell transcriptomics yields ever growing data sets containing RNA expression levels for thousands of genes from up to millions of cells. Common data analysis pipelines include a dimensionality reduction step for visualising the data in two dimensions, most frequently performed using t-distrib...
Autores principales: | Kobak, Dmitry, Berens, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882829/ https://www.ncbi.nlm.nih.gov/pubmed/31780648 http://dx.doi.org/10.1038/s41467-019-13056-x |
Ejemplares similares
-
Conditional t-SNE: more informative t-SNE embeddings
por: Kang, Bo, et al.
Publicado: (2020) -
Visualization of SNPs with t-SNE
por: Platzer, Alexander
Publicado: (2013) -
Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
por: Lause, Jan, et al.
Publicado: (2021) -
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
por: Häkkinen, Antti, et al.
Publicado: (2020) -
A generalization of t-SNE and UMAP to single-cell multimodal omics
por: Do, Van Hoan, et al.
Publicado: (2021)