Cargando…

Intracerebral Haemorrhage Segmentation in Non-Contrast CT

A 3-dimensional (3D) convolutional neural network is presented for the segmentation and quantification of spontaneous intracerebral haemorrhage (ICH) in non-contrast computed tomography (NCCT). The method utilises a combination of contextual information on multiple scales for fast and fully automati...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Ajay, Schreuder, Floris H. B. M., Klijn, Catharina J. M., Prokop, Mathias, Ginneken, Bram van, Marquering, Henk A., Roos, Yvo B. W. E. M., Baharoglu, M. Irem, Meijer, Frederick J. A., Manniesing, Rashindra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882855/
https://www.ncbi.nlm.nih.gov/pubmed/31780815
http://dx.doi.org/10.1038/s41598-019-54491-6
_version_ 1783474253090258944
author Patel, Ajay
Schreuder, Floris H. B. M.
Klijn, Catharina J. M.
Prokop, Mathias
Ginneken, Bram van
Marquering, Henk A.
Roos, Yvo B. W. E. M.
Baharoglu, M. Irem
Meijer, Frederick J. A.
Manniesing, Rashindra
author_facet Patel, Ajay
Schreuder, Floris H. B. M.
Klijn, Catharina J. M.
Prokop, Mathias
Ginneken, Bram van
Marquering, Henk A.
Roos, Yvo B. W. E. M.
Baharoglu, M. Irem
Meijer, Frederick J. A.
Manniesing, Rashindra
author_sort Patel, Ajay
collection PubMed
description A 3-dimensional (3D) convolutional neural network is presented for the segmentation and quantification of spontaneous intracerebral haemorrhage (ICH) in non-contrast computed tomography (NCCT). The method utilises a combination of contextual information on multiple scales for fast and fully automatic dense predictions. To handle a large class imbalance present in the data, a weight map is introduced during training. The method was evaluated on two datasets of 25 and 50 patients respectively. The reference standard consisted of manual annotations for each ICH in the dataset. Quantitative analysis showed a median Dice similarity coefficient of 0.91 [0.87–0.94] and 0.90 [0.85–0.92] for the two test datasets in comparison to the reference standards. Evaluation of a separate dataset of 5 patients for the assessment of the observer variability produced a mean Dice similarity coefficient of 0.95 ± 0.02 for the inter-observer variability and 0.97 ± 0.01 for the intra-observer variability. The average prediction time for an entire volume was 104 ± 15 seconds. The results demonstrate that the method is accurate and approaches the performance of expert manual annotation.
format Online
Article
Text
id pubmed-6882855
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68828552019-12-06 Intracerebral Haemorrhage Segmentation in Non-Contrast CT Patel, Ajay Schreuder, Floris H. B. M. Klijn, Catharina J. M. Prokop, Mathias Ginneken, Bram van Marquering, Henk A. Roos, Yvo B. W. E. M. Baharoglu, M. Irem Meijer, Frederick J. A. Manniesing, Rashindra Sci Rep Article A 3-dimensional (3D) convolutional neural network is presented for the segmentation and quantification of spontaneous intracerebral haemorrhage (ICH) in non-contrast computed tomography (NCCT). The method utilises a combination of contextual information on multiple scales for fast and fully automatic dense predictions. To handle a large class imbalance present in the data, a weight map is introduced during training. The method was evaluated on two datasets of 25 and 50 patients respectively. The reference standard consisted of manual annotations for each ICH in the dataset. Quantitative analysis showed a median Dice similarity coefficient of 0.91 [0.87–0.94] and 0.90 [0.85–0.92] for the two test datasets in comparison to the reference standards. Evaluation of a separate dataset of 5 patients for the assessment of the observer variability produced a mean Dice similarity coefficient of 0.95 ± 0.02 for the inter-observer variability and 0.97 ± 0.01 for the intra-observer variability. The average prediction time for an entire volume was 104 ± 15 seconds. The results demonstrate that the method is accurate and approaches the performance of expert manual annotation. Nature Publishing Group UK 2019-11-28 /pmc/articles/PMC6882855/ /pubmed/31780815 http://dx.doi.org/10.1038/s41598-019-54491-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Patel, Ajay
Schreuder, Floris H. B. M.
Klijn, Catharina J. M.
Prokop, Mathias
Ginneken, Bram van
Marquering, Henk A.
Roos, Yvo B. W. E. M.
Baharoglu, M. Irem
Meijer, Frederick J. A.
Manniesing, Rashindra
Intracerebral Haemorrhage Segmentation in Non-Contrast CT
title Intracerebral Haemorrhage Segmentation in Non-Contrast CT
title_full Intracerebral Haemorrhage Segmentation in Non-Contrast CT
title_fullStr Intracerebral Haemorrhage Segmentation in Non-Contrast CT
title_full_unstemmed Intracerebral Haemorrhage Segmentation in Non-Contrast CT
title_short Intracerebral Haemorrhage Segmentation in Non-Contrast CT
title_sort intracerebral haemorrhage segmentation in non-contrast ct
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882855/
https://www.ncbi.nlm.nih.gov/pubmed/31780815
http://dx.doi.org/10.1038/s41598-019-54491-6
work_keys_str_mv AT patelajay intracerebralhaemorrhagesegmentationinnoncontrastct
AT schreuderflorishbm intracerebralhaemorrhagesegmentationinnoncontrastct
AT klijncatharinajm intracerebralhaemorrhagesegmentationinnoncontrastct
AT prokopmathias intracerebralhaemorrhagesegmentationinnoncontrastct
AT ginnekenbramvan intracerebralhaemorrhagesegmentationinnoncontrastct
AT marqueringhenka intracerebralhaemorrhagesegmentationinnoncontrastct
AT roosyvobwem intracerebralhaemorrhagesegmentationinnoncontrastct
AT baharoglumirem intracerebralhaemorrhagesegmentationinnoncontrastct
AT meijerfrederickja intracerebralhaemorrhagesegmentationinnoncontrastct
AT manniesingrashindra intracerebralhaemorrhagesegmentationinnoncontrastct