Cargando…
Machine Learning Approaches to Radiogenomics of Breast Cancer using Low-Dose Perfusion Computed Tomography: Predicting Prognostic Biomarkers and Molecular Subtypes
Radiogenomics investigates the relationship between imaging phenotypes and genetic expression. Breast cancer is a heterogeneous disease that manifests complex genetic changes and various prognosis and treatment response. We investigate the value of machine learning approaches to radiogenomics using...
Autores principales: | Park, Eun Kyung, Lee, Kwang-sig, Seo, Bo Kyoung, Cho, Kyu Ran, Woo, Ok Hee, Son, Gil Soo, Lee, Hye Yoon, Chang, Young Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882909/ https://www.ncbi.nlm.nih.gov/pubmed/31780739 http://dx.doi.org/10.1038/s41598-019-54371-z |
Ejemplares similares
-
MRI-based breast cancer radiogenomics using RNA profiling: association with subtypes in a single-center prospective study
por: Park, Ah Young, et al.
Publicado: (2023) -
Machine Learning Models That Integrate Tumor Texture and Perfusion Characteristics Using Low-Dose Breast Computed Tomography Are Promising for Predicting Histological Biomarkers and Treatment Failure in Breast Cancer Patients
por: Park, Hyun-Soo, et al.
Publicado: (2021) -
Radiomics and radiogenomics of primary liver cancers
por: Jeong, Woo Kyoung, et al.
Publicado: (2019) -
Breast Ultrasound Microvascular Imaging and Radiogenomics
por: Park, Ah Young, et al.
Publicado: (2021) -
Machine Learning and Radiogenomics: Lessons Learned and Future Directions
por: Kang, John, et al.
Publicado: (2018)